BZOJ 3876 支线剧情 | 有下界费用流

题意

这题题面搞得我看了半天没看懂……是这样的,原题中的“剧情”指的是边,“剧情点”指的才是点。

题面翻译过来大概是这样:

有一个DAG,每次从1号点出发,走过一条路径,再瞬移回1号点。问:想要遍历所有的边,至少要走多少路程(瞬移回1号点不算路程)。

题解

我们用有上下界费用流的模型,建个图:

  1. 原图中的每条边,流量范围是\([1, +\infty]\),表示至少走一次,可以走无限次,这条边的费用就是边权。
  2. 原图中的每个点(除1号点外)向1号点连一条边,流量范围是\([0, +\infty]\),费用为0,表示任意节点随时可以回到1号节点。

在这个图上求一个最小费用最小流即可。

那么我们再用上下界网络流的套路给这个图改成正常的有源汇网络流:

  1. 对于原图中的每条边\(u \to v\)(边权为\(w\)),建边\((u, v, +\infty , w), (S, v, 1, w)\);
  2. 对于每个出度为\(t\)的点\(u\),建边\((u, T, t, 0)\);
  3. 对于每个非1的点\(u\),建边\((u, 1, +\infty, 0)\)。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <queue>
using namespace std;
typedef long long ll;
#define enter putchar('\n')
#define space putchar(' ')
template <class T>
void read(T &x){
char c;
bool op = 0;
while(c = getchar(), c > '9' || c < '0')
if(c == '-') op = 1;
x = c - '0';
while(c = getchar(), c >= '0' && c <= '9')
x = x * 10 + c - '0';
if(op) x = -x;
}
template <class T>
void write(T x){
if(x < 0) putchar('-'), x = -x;
if(x >= 10) write(x / 10);
putchar('0' + x % 10);
} const int N = 305, M = 2000005, INF = 0x3f3f3f3f;
int n, src, des;
int ecnt = 1, adj[N], pre[N], dis[N], go[M], nxt[M], cap[M], cost[M];
queue <int> que;
bool inq[N]; void ADD(int u, int v, int _cap, int _cost){
go[++ecnt] = v;
nxt[ecnt] = adj[u];
adj[u] = ecnt;
cap[ecnt] = _cap;
cost[ecnt] = _cost;
}
void add(int u, int v, int _cap, int _cost){
ADD(u, v, _cap, _cost);
ADD(v, u, 0, -_cost);
}
bool spfa(){
for(int i = 1; i <= des; i++)
dis[i] = INF, pre[i] = 0;
dis[src] = 0, que.push(src), inq[src] = 1;
while(!que.empty()){
int u = que.front();
que.pop(), inq[u] = 0;
for(int e = adj[u], v; e; e = nxt[e])
if(cap[e] && dis[v = go[e]] > dis[u] + cost[e]){
dis[v] = dis[u] + cost[e], pre[v] = e;
if(!inq[v]) que.push(v), inq[v] = 1;
}
}
return pre[des] != 0;
}
int mcmf(){
int ret = 0;
while(spfa()){
int flow = INF;
for(int e = pre[des]; e; e = pre[go[e ^ 1]])
flow = min(flow, cap[e]);
for(int e = pre[des]; e; e = pre[go[e ^ 1]])
cap[e] -= flow, cap[e ^ 1] += flow;
ret += flow * dis[des];
}
return ret;
} int main(){ read(n), src = n + 1, des = src + 1;
for(int u = 1, t; u <= n; u++){
read(t);
for(int i = 1, v, w; i <= t; i++)
read(v), read(w), add(src, v, 1, w), add(u, v, INF, w);
add(u, des, t, 0);
if(u != 1) add(u, 1, INF, 0);
}
write(mcmf()), enter; return 0;
}

BZOJ 3876 支线剧情 | 有下界费用流的更多相关文章

  1. BZOJ 3876: [Ahoi2014]支线剧情 [上下界费用流]

    3876: [Ahoi2014]支线剧情 题意:每次只能从1开始,每条边至少经过一次,有边权,求最小花费 裸上下界费用流...每条边下界为1就行了 注意要加上下界*边权 #include <io ...

  2. [AHOI2014&&JSOI2014][bzoj3876] 支线剧情 [上下界费用流]

    题面 传送门 思路 转化模型:给一张有向无环图,每次你可以选择一条路径走,花费的时间为路径上边权的总和,问要使所有边都被走至少一遍(可以重复),至少需要花费多久 走至少一遍,等价于覆盖这条边 也就是说 ...

  3. [bzoj3876][AHOI2014]支线剧情——上下界费用流

    题目 传送门 题解 建立s和t,然后s向1连下限0上限inf费用0的边,除1外所有节点向t连下限0上限inf费用0的边,对于每条边下限为1上限为inf费用为经过费用,然后我们只有做上下界网络流构出新图 ...

  4. 刷题总结——支线剧情(bzoj3876费用流)

    题目: [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往 都有很多的支线剧情,现在JYY想花费最 ...

  5. BZOJ 3876 支线剧情(有上下界的无源汇最小费用可行流)

    3876: [Ahoi2014]支线剧情 Time Limit: 10 Sec  Memory Limit: 256 MB Submit: 1783  Solved: 1079 [Submit][St ...

  6. BZOJ 3876 支线剧情

    支线剧情 [故事背景] 宅男JYY非常喜欢玩RPG游戏,比如仙剑,轩辕剑等等.不过JYY喜欢的并不是战斗场景,而是类似电视剧一般的充满恩怨情仇的剧情.这些游戏往往都有很多的支线剧情,现在JYY想花费最 ...

  7. BZOJ 3876 支线剧情 有源汇有上下界最小费用可行流

    题意: 给定一张拓扑图,每条边有边权,每次只能从第一个点出发沿着拓扑图走一条路径,求遍历所有边所需要的最小边权和 分析: 这道题乍一看,可能会想到什么最小链覆盖之类的,但是仔细一想,会发现不行,一是因 ...

  8. BZOJ 4108: [Wf2015]Catering [上下界费用流]

    4108: [Wf2015]Catering 题意:有一家装备出租公司收到了按照时间顺序排列的n个请求. 这家公司有k个搬运工.每个搬运工可以搬着一套装备按时间顺序去满足一些请求.一个搬运工从第i个请 ...

  9. BZOJ 4213 贪吃蛇 上下界费用流 网络流

    https://darkbzoj.cf/problem/4213 https://www.cnblogs.com/DaD3zZ-Beyonder/p/5733326.html 题目描述 dbzoj又崩 ...

随机推荐

  1. Table Generator 表格样式生成代码

    <style type="text/css"> .tg {border-collapse:collapse;border-spacing:0;} .tg td{font ...

  2. Python3入门(六)——函数式编程

    一.高阶函数 1.可以通过变量指向函数,达到类似别名的效果: >>> f = abs >>> f(-10) 10 2.函数的参数可以是函数,也就是函数可以作为一个入 ...

  3. 基于TLS证书手动部署kubernetes集群(上)

    一.简介 Kubernetes是Google在2014年6月开源的一个容器集群管理系统,使用Go语言开发,Kubernetes也叫K8S. K8S是Google内部一个叫Borg的容器集群管理系统衍生 ...

  4. 20155227《网络对抗》Exp7 网络欺诈防范

    20155227<网络对抗>Exp7 网络欺诈防范 实践内容(3.5分) 本实践的目标理解常用网络欺诈背后的原理,以提高防范意识,并提出具体防范方法.具体实践有 (1)简单应用SET工具建 ...

  5. 2017-2018-2 20155315《网络对抗技术》Exp8 :Web基础

    实验目的 理解HTML,学会Web前端.Web后端和数据库编程及SQL注入.XSS攻击测试 教程 实验内容 操作程序规律 运行脚本或可执行文件 查看配置文件 出错找日志 Web前端HTML 能正常安装 ...

  6. 纯 CSS 利用 label + input 实现选项卡

    clip 属性 用于剪裁绝对定位元素. .class { position:absolute; clip:rect(0px,60px,200px,0px); } scroll-behavior: sm ...

  7. Mysql + Mybatis动态建表

    service层业务 package com.zx.common.service.impl; import com.zx.common.entity.SysUser; import com.zx.co ...

  8. 调用wx.request接口时需要注意的几个问题

    写在前面 之前写了一篇<微信小程序实现各种特效实例>,上次的小程序的项目我负责大部分前端后台接口的对接,然后学长帮我改了一些问题.总的来说,收获了不少吧! 现在项目已经完成,还是要陆陆续续 ...

  9. 如何设计一个异步Web服务——接口部分

    需求比较简单,提供一个异步Web服务供使用者调用.比如说,某应用程序需要批量地给图片加lomo效果.由于加lomo效果这个操作非常消耗CPU资源,所以我们需要把这个加lomo效果的程序逻辑放到一台单独 ...

  10. linux chroot 命令

    chroot,即 change root directory (更改 root 目录).在 linux 系统中,系统默认的目录结构都是以 /,即以根 (root) 开始的.而在使用 chroot 之后 ...