BZOJ3673/3674:可持久化并查集
Description
n个集合 m个操作
操作:
1 a b 合并a,b所在集合
2 k 回到第k次操作之后的状态(查询算作操作)
3 a b 询问a,b是否属于同一集合,是则输出1否则输出0
0<n,m<=2*10^4
Input
Output
Sample Input
1 1 2
3 1 2
2 0
3 1 2
2 1
3 1 2
Sample Output
1
0
1
Solution
板子题……只不过网上有很多假做法。
具体做法就是整两个可持久化数组(不知道谁起的这么鬼畜的名字……我还是更喜欢叫他可持久化线段树)来记录并查集的$fa$数组和$dep$数组。因为路径压缩会破坏可持久化的结构,所以我们只能记录$dep$数组来按秩合并。
网上很多只搞了一颗可持久化线段树,维护$fa$就可持久化线段树$insert$一条链,维护$dep$就修改历史版本上的点的做法是错的……已经被卡掉了QAQ
Code
#include<iostream>
#include<cstdio>
#define N (200009)
using namespace std; int n,m,lastans,opt,x,y; struct Tree
{
struct Sgt{int ls,rs,v;}Segt[N*];
int sgt_num,a[N],Root[N];
int Build(int l,int r)
{
int now=++sgt_num;
if (l==r) {Segt[now].v=a[l]; return now;}
int mid=(l+r)>>;
Segt[now].ls=Build(l,mid);
Segt[now].rs=Build(mid+,r);
return now;
}
int Update(int pre,int l,int r,int x,int v)
{
int now=++sgt_num;
Segt[now].ls=Segt[pre].ls;
Segt[now].rs=Segt[pre].rs;
if (l==r) {Segt[now].v=v; return now;}
int mid=(l+r)>>;
if (x<=mid) Segt[now].ls=Update(Segt[now].ls,l,mid,x,v);
else Segt[now].rs=Update(Segt[now].rs,mid+,r,x,v);
return now;
}
int Query(int now,int l,int r,int x)
{
if (l==r) return Segt[now].v;
int mid=(l+r)>>;
if (x<=mid) return Query(Segt[now].ls,l,mid,x);
else return Query(Segt[now].rs,mid+,r,x);
}
}CT[]; int Find(int x,int t)
{
int fa=CT[].Query(CT[].Root[t],,n,x);
return x==fa?x:Find(fa,t);
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=n; ++i)
CT[].a[i]=i, CT[].a[i]=;
CT[].Root[]=CT[].Build(,n);
CT[].Root[]=CT[].Build(,n);
for (int i=; i<=m; ++i)
{
scanf("%d",&opt);
if (opt==)
{
CT[].Root[i]=CT[].Root[i-];
CT[].Root[i]=CT[].Root[i-];
scanf("%d%d",&x,&y);
/*x^=lastans; y^=lastans;*/
int fx=Find(x,i),fy=Find(y,i);
if (fx==fy) continue;
int dfx=CT[].Query(CT[].Root[i],,n,fx);
int dfy=CT[].Query(CT[].Root[i],,n,fy);
if (dfx>dfy) swap(fx,fy);
CT[].Root[i]=CT[].Update(CT[].Root[i],,n,fx,fy);
if (dfx!=dfy) continue;
CT[].Root[i]=CT[].Update(CT[].Root[i],,n,fy,dfy+);
}
if (opt==)
{
scanf("%d",&x); /*x^=lastans;*/
CT[].Root[i]=CT[].Root[x];
CT[].Root[i]=CT[].Root[x];
}
if (opt==)
{
CT[].Root[i]=CT[].Root[i-];
CT[].Root[i]=CT[].Root[i-];
scanf("%d%d",&x,&y);
/*x^=lastans; y^=lastans;*/
int fx=Find(x,i),fy=Find(y,i);
if (fx==fy) puts("")/*, lastans=1*/;
else puts("")/*, lastans=0*/;
}
}
}
BZOJ3673/3674:可持久化并查集的更多相关文章
- [BZOJ3673&3674]可持久化并查集&加强版
题目大意:让你实现一个可持久化的并查集(3674强制在线). 解题思路:刚刚介绍了一个叫rope的神器:我是刘邦,在这两题(实际上两题没什么区别)就派上用场了. 正解应该是主席树||可持久化平衡树,然 ...
- [bzoj3673/3674可持久化并查集加强版]
n个集合 m个操作 操作: 1 a b 合并a,b所在集合 2 k 回到第k次操作之后的状态(查询算作操作) 3 a b 询问a,b是否属于同一集合,是则输出1否则输出0 0<n,m<=2 ...
- BZOJ 3674 可持久化并查集加强版(路径压缩版本)
/* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...
- BZOJ 3674 可持久化并查集加强版(按秩合并版本)
/* bzoj 3674: 可持久化并查集加强版 http://www.lydsy.com/JudgeOnline/problem.php?id=3674 用可持久化线段树维护可持久化数组从而实现可持 ...
- 【BZOJ】3673: 可持久化并查集 by zky & 3674: 可持久化并查集加强版(可持久化线段树)
http://www.lydsy.com/JudgeOnline/problem.php?id=3674 http://www.lydsy.com/JudgeOnline/problem.php?id ...
- bzoj 3673&3674 可持久化并查集&加强版(可持久化线段树+启发式合并)
CCZ在2015年8月25日也就是初三暑假要结束的时候就已经能切这种题了%%% 学习了另一种启发式合并的方法,按秩合并,也就是按树的深度合并,实际上是和按树的大小一个道理,但是感觉(至少在这题上)更好 ...
- BZOJ 3674 可持久化并查集加强版(主席树变形)
3673: 可持久化并查集 by zky Time Limit: 5 Sec Memory Limit: 128 MB Submit: 2515 Solved: 1107 [Submit][Sta ...
- bzoj 3674: 可持久化并查集加强版 (启发式合并+主席树)
Description Description:自从zkysb出了可持久化并查集后……hzwer:乱写能AC,暴力踩标程KuribohG:我不路径压缩就过了!ndsf:暴力就可以轻松虐!zky:…… ...
- [bzoj] 3673 3674 可持久化并查集 || 可持久化数组
原题 加强版 题意: 可持久化并查集模板-- 题解: 用可持久化线段树维护一个可持久化数组,来记录每一次操作后的状态. 不能用路径压缩,但是要按置合并,使复杂度保证在O(log) #include&l ...
随机推荐
- c#关于路径的总结(转)
来源:http://www.cnblogs.com/yugongmengjiutian/articles/5521165.html 前一段时间写代码时经常遇到获取路径问题,总是感觉有点乱,于是就总结了 ...
- asp.net错误记录
//登录 jquery-ajax post请求后台无法获取数据,get就可以!!!原因:get方法,后台接收用Request.QueryString["para1"];post方法 ...
- Java虚拟机 - 多态性实现机制
[深入Java虚拟机]之五:多态性实现机制——静态分派与动态分派 方法解析 Class文件的编译过程中不包含传统编译中的连接步骤,一切方法调用在Class文件里面存储的都只是符号引用,而不是方法在实际 ...
- Mybatis插件开发
前面几篇文章介绍了Mybtis中四个重要的对象,其中提到它们都是在Configuration中被创建的,我们一起看一下创建四大对象的方法,代码如下所示: public ParameterHandler ...
- python-中介者模式
源码地址:https://github.com/weilanhanf/PythonDesignPatterns 说明: 面向对象设计中鼓励将行为分不到各个对象中,这种分布可能会导致对象间有许多连接.最 ...
- JS touch
一个月没写博客了,感觉空唠唠的,有多好想写的,今天全都给补上吧,记录最近这个月的收获 https://blog.csdn.net/sinat_19327991/article/details/7382 ...
- windows 公司内部搭建禅道(项目管控)
禅道的搭建异常爽快,非常方便,一般情况下我们使用开源版就可以了.下面是搭建流程,这里主要记录一些前期的注意事项 使用一键安装版就可以,很快,禅道安装主机安装好所需的Apache容器和mysql数据库, ...
- BZOJ5473: 仙人掌
传送门 首先,所有连通块的个数的期望再减去每个点孤立的概率就是答案. 设 \(d_i\) 表示 \(i\) 的度数,那么每个点孤立的概率为 \(\frac{1}{2^{d_i}}\) 考虑计算所有连通 ...
- KOTLIN-1(常用网址)
---恢复内容开始--- 1.官网:http://kotlinlang.org/ 2.官方文档:https://kotlinlang.org/docs/reference 3.kotlin源码:htt ...
- UWP开发细节记录:DirectX::XMMATRIX 的坑
这两天写的代码概率性的崩溃在 XMMatrixMultiply() 函数,XMMatrixMultiply() 本身是 inline 函数可以看到崩溃处的代码: vX = _mm_mul_ps(vX, ...