Java 容器源码分析之1.8HashMap方法讲解
前言:Java8之后新增挺多新东西,在网上找了些相关资料,关于HashMap在自己被血虐之后痛定思痛决定整理一下相关知识方便自己看。图和有些内容参考的这个文章:http://www.importnew.com/16599.html
HashMap的存储结构如图:一个桶(bucket)上的节点多于8个则存储结构是红黑树,小于8个是单向链表。
1:HashMap的一些属性
public class HashMap<k,v> extends AbstractMap<k,v> implements Map<k,v>, Cloneable, Serializable { private static final long serialVersionUID = 362498820763181265L; // 默认的初始容量是16
static final int DEFAULT_INITIAL_CAPACITY = 1 << 4; // 最大容量
static final int MAXIMUM_CAPACITY = 1 << 30; // 默认的填充因子(以前的版本也有叫加载因子的)
static final float DEFAULT_LOAD_FACTOR = 0.75f; // 这是一个阈值,当桶(bucket)上的链表数大于这个值时会转成红黑树,put方法的代码里有用到
static final int TREEIFY_THRESHOLD = 8; // 也是阈值同上一个相反,当桶(bucket)上的链表数小于这个值时树转链表
static final int UNTREEIFY_THRESHOLD = 6; // 看源码注释里说是:树的最小的容量,至少是 4 x TREEIFY_THRESHOLD = 32 然后为了避免(resizing 和 treeification thresholds) 设置成64
static final int MIN_TREEIFY_CAPACITY = 64; // 存储元素的数组,总是2的倍数
transient Node<k,v>[] table; transient Set<map.entry<k,v>> entrySet; // 存放元素的个数,注意这个不等于数组的长度。
transient int size; // 每次扩容和更改map结构的计数器
transient int modCount; // 临界值 当实际大小(容量*填充因子)超过临界值时,会进行扩容
int threshold; // 填充因子
final float loadFactor;
2:HashMap的构造方法
// 指定初始容量和填充因子的构造方法
public HashMap(int initialCapacity, float loadFactor) {
// 指定的初始容量非负
if (initialCapacity < 0)
throw new IllegalArgumentException(Illegal initial capacity: +
initialCapacity);
// 如果指定的初始容量大于最大容量,置为最大容量
if (initialCapacity > MAXIMUM_CAPACITY)
initialCapacity = MAXIMUM_CAPACITY;
// 填充比为正
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException(Illegal load factor: +
loadFactor);
this.loadFactor = loadFactor;
// 指定容量后,tableSizeFor方法计算出临界值,put数据的时候如果超出该值就会扩容,该值肯定也是2的倍数
// 指定的初始容量没有保存下来,只用来生成了一个临界值
this.threshold = tableSizeFor(initialCapacity);
} // 该方法保证总是返回大于cap并且是2的倍数的值,比如传入999 返回1024
static final int tableSizeFor(int cap) {
int n = cap - 1;
// 向右做无符号位移
n |= n >>> 1;
n |= n >>> 2;
n |= n >>> 4;
n |= n >>> 8;
n |= n >>> 16;
// 三目运算符的嵌套
return (n < 0) ? 1 : (n >= MAXIMUM_CAPACITY) ? MAXIMUM_CAPACITY : n + 1;
} //构造函数2
public HashMap(int initialCapacity) {
this(initialCapacity, DEFAULT_LOAD_FACTOR);
} //构造函数3
public HashMap() {
this.loadFactor = DEFAULT_LOAD_FACTOR; // all other fields defaulted
}
3:get和put的时候确定元素在数组中的位置
static final int hash(Object key) {
int h;
return (key == null) ? 0 : (h = key.hashCode()) ^ (h >>> 16);
}
要确定位置
第一步:首先是要计算key的hash码,是一个int类型数字。那后面的 h >>> 16 源码注释的说法是:为了避免hash碰撞(hash collisons)将高位分散到低位上了,这是综合考虑了速度,性能等各方面因素之后做出的。
第二步: h是hash码,length是上面Node[]数组的长度,做与运算 h & (length-1)。由于length是2的倍数-1后它的二进制码都是1而1与上其他数的结果可能是0也可能是1,这样保证运算后的均匀性。也就是hash方法保证了结果的均匀性,这点非常重要,会极大的影响HashMap的put和get性能。看下图对比:
图3.1是非对称的hash结果
图3.2是均衡的hash结果
这两个图的数据不是很多,如果链表长度超过8个会转成红黑树。那个时候看着会更明显,jdk8之前一直是链表,链表查询的复杂度是O(n)而红黑树由于其自身的特点,查询的复杂度是O(log(n))。如果hash的结果不均匀会极大影响操作的复杂度。相关的知识这里有一个<a href=”http://blog.chinaunix.net/uid-26575352-id-3061918.html”>红黑树基础知识博客 </a>网上还有个例子来验证:自定义了一个对象来做key,调整hashCode()方法来看put值得时间
public class MutableKeyTest {
public static void main(String args[]){
class MyKey {
Integer i; public void setI(Integer i) {
this.i = i;
} public MyKey(Integer i) {
this.i = i;
} @Override
public int hashCode() {
// 如果返回1
// return 1
return i;
} // object作为key存map里,必须实现equals方法
@Override
public boolean equals(Object obj) {
if (obj instanceof MyKey) {
return i.equals(((MyKey)obj).i);
} else {
return false;
}
}
} // 我机器配置不高,25000的话正常情况27毫秒,可以用2500万试试,如果hashCode()方法返回1的话,250万就卡死
Map<MyKey,String> map = new HashMap<>(25000,1);
Date begin = new Date();
for (int i = 0; i < 20000; i++){
map.put(new MyKey(i), "test " + i);
} Date end = new Date();
System.out.println("时间(ms) " + (end.getTime() - begin.getTime()));
4:get方法
public V get(Object key) {
Node<k,v> e;
return (e = getNode(hash(key), key)) == null ? null : e.value;
} final Node<k,v> getNode(int hash, Object key) {
Node<k,v>[] tab; Node<k,v> first, e; int n; K k;
// hash & (length-1)得到红黑树的树根位置或者是链表的表头
if ((tab = table) != null && (n = tab.length) > 0 &&
(first = tab[(n - 1) & hash]) != null) {
if (first.hash == hash && // always check first node
((k = first.key) == key || (key != null && key.equals(k))))
return first;
if ((e = first.next) != null) {
// 如果是树,遍历红黑树复杂度是O(log(n)),得到节点值
if (first instanceof TreeNode)
return ((TreeNode<k,v>)first).getTreeNode(hash, key);
// else是链表结构
do {
if (e.hash == hash &&
((k = e.key) == key || (key != null && key.equals(k))))
return e;
} while ((e = e.next) != null);
}
}
return null;
}
5 :put方法,put的时候根据 h & (length – 1) 定位到那个桶然后看是红黑树还是链表再putVal
public V put(K key, V value) {
return putVal(hash(key), key, value, false, true);
} final V putVal(int hash, K key, V value, boolean onlyIfAbsent,
boolean evict) {
Node<k,v>[] tab; Node<k,v> p; int n, i;
// 如果tab为空或长度为0,则分配内存resize()
if ((tab = table) == null || (n = tab.length) == 0)
n = (tab = resize()).length;
// (n - 1) & hash找到put位置,如果为空,则直接put
if ((p = tab[i = (n - 1) & hash]) == null)
tab[i] = newNode(hash, key, value, null);
else {
Node<k,v> e; K k;
// 第一节节点hash值同,且key值与插入key相同
if (p.hash == hash &&((k = p.key) == key || (key != null && key.equals(k))))
e = p;
else if (p instanceof TreeNode)
// 红黑树的put方法比较复杂,putVal之后还要遍历整个树,必要的时候修改值来保证红黑树的特点
e = ((TreeNode<k,v>)p).putTreeVal(this, tab, hash, key, value);
else {
// 链表
for (int binCount = 0; ; ++binCount) {
if ((e = p.next) == null) {
// e为空,表示已到表尾也没有找到key值相同节点,则新建节点
p.next = newNode(hash, key, value, null);
// 新增节点后如果节点个数到达阈值,则将链表转换为红黑树
if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
treeifyBin(tab, hash);
break;
}
// 容许空key空value
if (e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k))))
break;
p = e;
}
}
// 更新hash值和key值均相同的节点Value值
if (e != null) { // existing mapping for key
V oldValue = e.value;
if (!onlyIfAbsent || oldValue == null)
e.value = value;
afterNodeAccess(e);
return oldValue;
}
}
++modCount;
if (++size > threshold)
resize();
afterNodeInsertion(evict);
return null;
}
6:resize方法
final Node<K,V>[] resize() {
Node<K,V>[] oldTab = table;
int oldCap = (oldTab == null) ? 0 : oldTab.length;
int oldThr = threshold;
int newCap, newThr = 0;
if (oldCap > 0) {
if (oldCap >= MAXIMUM_CAPACITY) {
threshold = Integer.MAX_VALUE;
return oldTab;
}
// 这一句比较重要,可以看出每次扩容是2倍
else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
oldCap >= DEFAULT_INITIAL_CAPACITY)
newThr = oldThr << 1; // double threshold
}
else if (oldThr > 0) // initial capacity was placed in threshold
newCap = oldThr;
else { // zero initial threshold signifies using defaults
newCap = DEFAULT_INITIAL_CAPACITY;
newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);
}
if (newThr == 0) {
float ft = (float)newCap * loadFactor;
newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
(int)ft : Integer.MAX_VALUE);
}
threshold = newThr;
@SuppressWarnings({"rawtypes","unchecked"})
Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
table = newTab;
if (oldTab != null) {
for (int j = 0; j < oldCap; ++j) {
Node<K,V> e;
if ((e = oldTab[j]) != null) {
oldTab[j] = null;
if (e.next == null)
newTab[e.hash & (newCap - 1)] = e;
else if (e instanceof TreeNode)
((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
else { // preserve order
Node<K,V> loHead = null, loTail = null;
Node<K,V> hiHead = null, hiTail = null;
Node<K,V> next;
do {
next = e.next;
if ((e.hash & oldCap) == 0) {
if (loTail == null)
loHead = e;
else
loTail.next = e;
loTail = e;
}
else {
if (hiTail == null)
hiHead = e;
else
hiTail.next = e;
hiTail = e;
}
} while ((e = next) != null);
if (loTail != null) {
loTail.next = null;
newTab[j] = loHead;
}
if (hiTail != null) {
hiTail.next = null;
newTab[j + oldCap] = hiHead;
}
}
}
}
}
return newTab;
}
Java 容器源码分析之1.8HashMap方法讲解的更多相关文章
- 基于JDK1.8,Java容器源码分析
容器源码分析 如果没有特别说明,以下源码分析基于 JDK 1.8. 在 IDEA 中 double shift 调出 Search EveryWhere,查找源码文件,找到之后就可以阅读源码. Lis ...
- Java 容器源码分析之1.7HashMap
以下内容基于jdk1.7.0_79源码: 什么是HashMap 基于哈希表的一个Map接口实现,存储的对象是一个键值对对象(Entry<K,V>): HashMap补充说明 基于数组和链表 ...
- Java 容器源码分析之 ArrayList
概览 ArrayList是最常使用的集合类之一了.在JDK文档中对ArrayList的描述是:ArrayList是对list接口的一种基于可变数组的实现.ArrayList类的声明如下: 12 pub ...
- Java 容器源码分析之ConcurrentHashMap
深入浅出ConcurrentHashMap(1.8) 前言 HashMap是我们平时开发过程中用的比较多的集合,但它是非线程安全的,在涉及到多线程并发的情况,进行put操作有可能会引起死循环,导致CP ...
- Java 容器源码分析之Map-Set-List
HashMap 的实现原理 HashMap 概述 HashMap 是基于哈希表的 Map 接口的非同步实现.此实现提供所有可选的映射操作,并允许使用 null 值和 null 键.此类不保证映射的顺序 ...
- java容器源码分析及常见面试题笔记
概览 容器主要包括 Collection 和 Map 两种,Collection 存储着对象的集合,而 Map 存储着键值对(两个对象)的映射表. List Arraylist: Object数组 ...
- Java 容器源码分析之 TreeMap
TreeMap 是一种基于红黑树实现的 Key-Value 结构.在使用集合视图在 HashMap 中迭代时,是不能保证迭代顺序的: LinkedHashMap 使用了双向链表,保证按照插入顺序或者访 ...
- Java 容器源码分析之 LinkedHashMap
同 HashMap 一样,LinkedHashMap 也是对 Map 接口的一种基于链表和哈希表的实现.实际上, LinkedHashMap 是 HashMap 的子类,其扩展了 HashMap 增加 ...
- Java 容器源码分析之 Map
ava.util 中的集合类包含 Java 中某些最常用的类.最常用的集合类是 List 和 Map.List 的具体实现包括 ArrayList 和 Vector,它们是可变大小的列表,比较适合构建 ...
随机推荐
- Codeforces812B Sagheer, the Hausmeister 2017-06-02 20:47 85人阅读 评论(0) 收藏
B. Sagheer, the Hausmeister time limit per test 1 second memory limit per test 256 megabytes input s ...
- NoSQL数据库的分布式算法
本文译自 Distributed Algorithms in NoSQL Databases 系统的可扩展性是推动NoSQL运动发展的的主要理由,包含了分布式系统协调,故障转移,资源管理和许多其他特性 ...
- Java 理论与实践: 用弱引用堵住内存泄漏
弱引用使得表达对象生命周期关系变得容易了 虽然用 Java™ 语言编写的程序在理论上是不会出现“内存泄漏”的,但是有时对象在不再作为程序的逻辑状态的一部分之后仍然不被垃圾收集.本月,负责保障应用程序健 ...
- hdu 5089 使做对k-1题最大概率的选题方案
http://acm.hdu.edu.cn/showproblem.php?pid=5089 给出N道难度递增的题目,难度用可能做出的百分比表示,选出K道题目使得做出K-1道题目的概率最大. 选k题的 ...
- cxgrid动态多表头
function TForm15.CreateBand(View: TcxGridDBBandedTableView; BandCaption, ParentBandCaption: String) ...
- delphi PosAnsi
function ValidateName(n: string): string; var banned, res: string; i,j: integer; begin res:= n; bann ...
- Android-Recyclerview的简单使用
由于Recyclerview是在 android.support.v7.widget.包 RecyclerView,所以需要导Recycler库: 导Recycler库: 选择项目,右键--> ...
- WPF如何设置Image.Source为资源图片
img.Source = new BitmapImage(new Uri(path,UriKind.RelativeOrAbsolute));
- 工作随笔——elasticsearch 6.6.1安装(docker-compose方式)
docker-compose.yml: version: '2.2' services: es1: image: docker.elastic.co/elasticsearch/elasticsear ...
- C# 日志输出工具库—log4net 安装、配置及简单应用
1.下载和安装 注意每次安装只是安装到本项目中,换了另一个项目需要再次安装和配置. 我使用的是Visual Studio 2013 社区版,在tools中找到NuGet包管理. 搜索log4net并点 ...