【IT笔试面试题整理】判断链表是否存在环路,并找出回路起点
【试题描述】定义一个函数,输入一个链表,判断链表是否存在环路,并找出回路起点
Circular linked list: A (corrupt) linked list in which a node’s next pointer points to an
earlier node, so as to make a loop in the linked list
EXAMPLE
Input: A -> B -> C -> D -> E -> C [the same C as earlier]
Output: C
If we move two pointers, one with speed 1 and another with speed 2, they will end up meet-ing if the linked list has a loop Why? Think about two cars driving on a track—the faster car
will always pass the slower one!
The tricky part here is finding the start of the loop Imagine, as an analogy, two people rac-ing around a track, one running twice as fast as the other If they start off at the same place, when will they next meet? They will next meet at the start of the next lap
Now, let’s suppose Fast Runner had a head start of k meters on an n step lap When will they next meet? They will meet k meters before the start of the next lap (Why? Fast Runner would have made k + 2(n - k) steps, including its head start, and Slow Runner would have made n - k steps Both will be k steps before the start of the loop )
Now, going back to the problem, when Fast Runner (n2) and Slow Runner (n1) are moving around our circular linked list, n2 will have a head start on the loop when n1 enters Specifi-cally, it will have a head start of k, where k is the number of nodes before the loop Since n2 has a head start of k nodes, n1 and n2 will meet k nodes before the start of the loop
So, we now know the following:
1 Head is k nodes from LoopStart (by definition)
2 MeetingPoint for n1 and n2 is k nodes from LoopStart (as shown above)
Thus, if we move n1 back to Head and keep n2 at MeetingPoint, and move them both at the
same pace, they will meet at LoopStart
分析:为何能够找到环的起始位置?
假设环的长度是 m, 进入环前经历的node的个数是 k , 那么,假设经过了时间 t,那么速度为2 的指针距离起始点的位置是: k + (2t - k) % m = k + (2t - k) - xm . 同理,速度为1的指针距离起始点的位置是 k + (t - k) % m = k + (t - k) - ym。
如果 k + (2t - k) - xm = k + (t - k) - ym ,可以得到 t = m (x - y)。 那么当t 最小为m的时候,也就是说,两个指针相聚在 距离 起始点 m - k的环内。换句话说,如果把一个指针移到链表的头部,然后两个指针都以 1 的速度前进,那么它们经过 k 时间后,就可以在环的起始点相遇。
【参考代码】
1 public static boolean judgeList(LinkList myList)
2 {
3 Link fast, slow;
4 fast = slow = myList.first;
5 while (true)
6 {
7 if (fast == null || fast.next == null)
8 return false;
9 else if (fast == slow || fast.next == slow)
10 return true;
11 else
12 {
13 slow = slow.next;
14 fast = fast.next.next;
15 }
16 }
17 }
1 public static Link FindBeginning(LinkList myList)
2 {
3 Link fast, slow;
4 fast = slow = myList.first;
5 while(fast.next !=null)
6 {
7 slow = slow.next;
8 fast = fast.next.next;
9 if(slow == fast)
10 break;
11 }
12
13 if(fast.next == null)
14 return null;
15 /* Move slow to Head. Keep fast at Meeting Point. Each are k steps
16 /* from the Loop Start. If they move at the same pace, they must
17 * meet at Loop Start. */
18 slow = myList.first;
19
20 while(slow!=fast)
21 {
22 slow = slow.next;
23 fast = fast.next;
24 }
25
26 return fast;
27 }
【IT笔试面试题整理】判断链表是否存在环路,并找出回路起点的更多相关文章
- 【IT笔试面试题整理】链表
如何准备 Linked list questions are extremely common These can range from simple (delete a node ina linke ...
- 【IT笔试面试题整理】判断一个二叉树是否是平衡的?
[试题描述]定义一个函数,输入一个链表,判断链表是否存在环路 平衡二叉树,又称AVL树.它或者是一棵空树,或者是具有下列性质的二叉树:它的左子树和右子树都是平衡二叉树,且左子树和右子树的高度之差之差的 ...
- Java笔试面试题整理第六波(修正版)
转载至:http://blog.csdn.net/shakespeare001/article/details/51330745 作者:山代王(开心阳) 本系列整理Java相关的笔试面试知识点,其他几 ...
- Java笔试面试题整理第八波
转载至:http://blog.csdn.net/shakespeare001/article/details/51388516 作者:山代王(开心阳) 本系列整理Java相关的笔试面试知识点,其他几 ...
- Java笔试面试题整理第四波
转载至:http://blog.csdn.net/shakespeare001/article/details/51274685 作者:山代王(开心阳) 本系列整理Java相关的笔试面试知识点,其他几 ...
- Java笔试面试题整理第三波
转载至:http://blog.csdn.net/shakespeare001/article/details/51247785 作者:山代王(开心阳) 本系列整理Java相关的笔试面试知识点,其他几 ...
- Java笔试面试题整理第二波
转载至:http://blog.csdn.net/shakespeare001/article/details/51200163 作者:山代王(开心阳) 本系列整理Java相关的笔试面试知识点,其他几 ...
- Java笔试面试题整理第五波
转载至:http://blog.csdn.net/shakespeare001/article/details/51321498 作者:山代王(开心阳) 本系列整理Java相关的笔试面试知识点,其他几 ...
- Java笔试面试题整理第一波
转载至:http://blog.csdn.net/shakespeare001/article/details/51151650 作者:山代王(开心阳) 本系列整理Java相关的笔试面试知识点,其他几 ...
随机推荐
- 【滚动条】Selenium+python自动化-JS处理滚动条
转载地址: http://www.cnblogs.com/yoyoketang/p/6128655.html --------------------------------------------- ...
- redis简单使用
主要参考资料:http://wiki.jikexueyuan.com/project/redis-guide/data-type.html一.redis 安装1.在官网下载安装包2.解压安装包 tar ...
- hdu 4923 单调栈
http://acm.hdu.edu.cn/showproblem.php?pid=4923 给定一个序列a,元素由0,1组成,求一个序列b,元素在0~1之间,并且保证递增.输出最小的∑(ai−bi) ...
- 最大m段子段和
hdu1024 最大m子序列和 给定你一个序列,让你求取m个子段(不想交的子段)并求取这m个子段和的最大值 从二维开始来看dp[i][j]表示取第j个数作为第i个子段的元素所得到的前i个子段和的最大值 ...
- MFC中处理UI界面时的注意点
最近开发时,在处理界面上遇到了下面的问题: 上位机与下位机通信时,如果出现超时,弹出MessageBox提示的情况下,更新界面上的CStatic控件会出现重影. 经过调查发现 原因是由于在UI线程中处 ...
- NLTK之WordNet 接口【转】
转自:http://www.cnblogs.com/kaituorensheng/p/3149095.html WordNet是面向语义的英语词典,类似于传统字典.它是NLTK语料库的一部分,可以 ...
- Android-Kotlin-枚举enum
案例一 星期: 星期的枚举:enum class 类名 {} package cn.kotlin.kotlin_oop09 /** * 定义星期的枚举类 */ enum class MyEnumera ...
- 分形之拆分三角形(Split Triangle)
前面讲了谢尔宾斯基三角形,它是不停地将一个三角形拆分三个与之相似的三角形.这一节给大家展示的图形是将一个等腰钝角三角形不停地拆分两个与之相似的三角形. 核心代码: static void SplitT ...
- iOS Document Interaction(预览和打开文档) 编程指南
原文:http://developer.apple.com/library/ios/#documentation/FileManagement/Conceptual/DocumentInteracti ...
- Ubuntu16.04安装NVIDIA显卡驱动
1.下载官方驱动程序 http://www.geforce.cn/drivers 如果我们直接安装驱动的话,往往会报错:ERROR: The Nouveau kernel driver is curr ...