机器学习 数据预处理之独热编码(One-Hot Encoding)(转)

问题由来

在很多机器学习任务中,特征并不总是连续值,而有可能是分类值。

例如,考虑一下的三个特征:

["male", "female"]

["from Europe", "from US", "from Asia"]

["uses Firefox", "uses Chrome", "uses Safari", "uses Internet Explorer"]

如果将上述特征用数字表示,效率会高很多。例如:

["male", "from US", "uses Internet Explorer"] 表示为[0, 1, 3]

["female", "from Asia", "uses Chrome"]表示为[1, 2, 1]

但是,即使转化为数字表示后,上述数据也不能直接用在我们的分类器中。因为,分类器往往默认数据数据是连续的,并且是有序的。但是,按照我们上述的表示,数字并不是有序的,而是随机分配的。

独热编码

为了解决上述问题,其中一种可能的解决方法是采用独热编码(One-Hot Encoding)。

独热编码即 One-Hot 编码,又称一位有效编码,其方法是使用N位状态寄存器来对N个状态进行编码,每个状态都由他独立的寄存器位,并且在任意时候,其中只有一位有效。

例如:

自然状态码为:000,001,010,011,100,101

独热编码为:000001,000010,000100,001000,010000,100000

可以这样理解,对于每一个特征,如果它有m个可能值,那么经过独热编码后,就变成了m个二元特征。并且,这些特征互斥,每次只有一个激活。因此,数据会变成稀疏的。

这样做的好处主要有:

  1. 解决了分类器不好处理属性数据的问题

  2. 在一定程度上也起到了扩充特征的作用

举例

我们基于Python和Scikit-learn写一个简单的例子:

from sklearn import preprocessing

enc = preprocessing.OneHotEncoder()

enc.fit([[0, 0, 3], [1, 1, 0], [0, 2, 1], [1, 0, 2]])

enc.transform([[0, 1, 3]]).toarray()

输出结果:

array([[ 1.,  0.,  0.,  1.,  0.,  0.,  0.,  0.,  1.]])

处理离散型特征和连续型特征并存的情况,如何做归一化。
参考博客进行了总结:
https://www.quora.com/What-are-good-ways-to-handle-discrete-and-continuous-inputs-together
总结如下:
1、拿到获取的原始特征,必须对每一特征分别进行归一化,比如,特征A的取值范围是[-1000,1000],特征B的取值范围是[-1,1].
如果使用logistic回归,w1*x1+w2*x2,因为x1的取值太大了,所以x2基本起不了作用。
所以,必须进行特征的归一化,每个特征都单独进行归一化。
2、连续型特征归一化的常用方法:
   2.1:Rescale bounded continuous features: All continuous input that are bounded, rescale them to [-1, 1] through x = (2x - max - min)/(max - min).线性放缩到[-1,1]
  2.2:Standardize all continuous features: All continuous input should be standardized and by this I mean, for every continuous feature, compute its mean (u) and standard deviation (s) and do x = (x - u)/s.放缩到均值为0,方差为1
1、离散型特征的处理方法:

a) Binarize categorical/discrete features: For all categorical features, represent them as multiple boolean features. For example, instead of having one feature called marriage_status, have 3 boolean features - married_status_single, married_status_married, married_status_divorced and appropriately set these features to 1 or -1. As you can see, for every categorical feature, you are adding k binary feature where k is the number of values that the categorical feature takes.对于离散的特征基本就是按照one-hot编码,该离散特征有多少取值,就用多少维来表示该特征。

为什么使用one-hot编码来处理离散型特征,这是有理由的,不是随便拍脑袋想出来的!!!具体原因,分下面几点来阐述: 
1、Why do we binarize categorical features?
We binarize the categorical input so that they can be thought of as a vector from the Euclidean space (we call this as embedding the vector in the Euclidean space).使用one-hot编码,将离散特征的取值扩展到了欧式空间,离散特征的某个取值就对应欧式空间的某个点。
 
2、Why do we embed the feature vectors in the Euclidean space?
Because many algorithms for classification/regression/clustering etc. requires computing distances between features or similarities between features. And many definitions of distances and similarities are defined over features in Euclidean space. So, we would like our features to lie in the Euclidean space as well.将离散特征通过one-hot编码映射到欧式空间,是因为,在回归,分类,聚类等机器学习算法中,特征之间距离的计算或相似度的计算是非常重要的,而我们常用的距离或相似度的计算都是在欧式空间的相似度计算,计算余弦相似性,基于的就是欧式空间。

3、Why does embedding the feature vector in Euclidean space require us to binarize categorical features?
Let us take an example of a dataset with just one feature (say job_type as per your example) and let us say it takes three values 1,2,3.
Now, let us take three feature vectors x_1 = (1), x_2 = (2), x_3 = (3). What is the euclidean distance between x_1 and x_2, x_2 and x_3 & x_1 and x_3? d(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_3) = 2. This shows that distance between job type 1 and job type 2 is smaller than job type 1 and job type 3. Does this make sense? Can we even rationally define a proper distance between different job types? In many cases of categorical features, we can properly define distance between different values that the categorical feature takes. In such cases, isn't it fair to assume that all categorical features are equally far away from each other?
Now, let us see what happens when we binary the same feature vectors. Then, x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1). Now, what are the distances between them? They are sqrt(2). So, essentially, when we binarize the input, we implicitly state that all values of the categorical features are equally away from each other.
将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值,不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3)。两个工作之间的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_3) = 2。那么x_1和x_3工作之间就越不相似吗?显然这样的表示,计算出来的特征的距离是不合理。那如果使用one-hot编码,则得到x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1),那么两个工作之间的距离就都是sqrt(2).即每两个工作之间的距离是一样的,显得更合理。
4、About the original question?
Note that our reason for why binarize the categorical features is independent of the number of the values the categorical features take, so yes, even if the categorical feature takes 1000 values, we still would prefer to do binarization.
对离散型特征进行one-hot编码是为了让距离的计算显得更加合理。
5、Are there cases when we can avoid doing binarization?
Yes. As we figured out earlier, the reason we binarize is because we want some meaningful distance relationship between the different values. As long as there is some meaningful distance relationship, we can avoid binarizing the categorical feature. For example, if you are building a classifier to classify a webpage as important entity page (a page important to a particular entity) or not and let us say that you have the rank of the webpage in the search result for that entity as a feature, then 1] note that the rank feature is categorical, 2] rank 1 and rank 2 are clearly closer to each other than rank 1 and rank 3, so the rank feature defines a meaningful distance relationship and so, in this case, we don't have to binarize the categorical rank feature.

More generally, if you can cluster the categorical values into disjoint subsets such that the subsets have meaningful distance relationship amongst them, then you don't have binarize fully, instead you can split them only over these clusters. For example, if there is a categorical feature with 1000 values, but you can split these 1000 values into 2 groups of 400 and 600 (say) and within each group, the values have meaningful distance relationship, then instead of fully binarizing, you can just add 2 features, one for each cluster and that should be fine.
将离散型特征进行one-hot编码的作用,是为了让距离计算更合理,但如果特征是离散的,并且不用one-hot编码就可以很合理的计算出距离,那么就没必要进行one-hot编码,比如,该离散特征共有1000个取值,我们分成两组,分别是400和600,两个小组之间的距离有合适的定义,组内的距离也有合适的定义,那就没必要用one-hot 编码
 
离散特征进行one-hot编码后,编码后的特征,其实每一维度的特征都可以看做是连续的特征。就可以跟对连续型特征的归一化方法一样,对每一维特征进行归一化。比如归一化到[-1,1]或归一化到均值为0,方差为1
 
有些情况不需要进行特征的归一化:
     It depends on your ML algorithms, some methods requires almost no efforts to normalize features or handle both continuous and discrete features, like tree based methods: c4.5, Cart, random Forrest, bagging or boosting. But most of parametric models (generalized linear models, neural network, SVM,etc) or methods using distance metrics (KNN, kernels, etc) will require careful work to achieve good results. Standard approaches including binary all features, 0 mean unit variance all continuous features, etc。
      基于树的方法是不需要进行特征的归一化,例如随机森林,bagging 和 boosting等。基于参数的模型或基于距离的模型,都是要进行特征的归一化。

one-hot编码为什么可以解决类别型数据的离散值问题 
首先,one-hot编码是N位状态寄存器为N个状态进行编码的方式 
eg:高、中、低不可分,→ 用0 0 0 三位编码之后变得可分了,并且成为互相独立的事件 
→ 类似 SVM中,原本线性不可分的特征,经过project之后到高维之后变得可分了 
GBDT处理高维稀疏矩阵的时候效果并不好,即使是低维的稀疏矩阵也未必比SVM好 
Tree Model不太需要one-hot编码: 
对于决策树来说,one-hot的本质是增加树的深度 
tree-model是在动态的过程中生成类似 One-Hot + Feature Crossing 的机制 
1. 一个特征或者多个特征最终转换成一个叶子节点作为编码 ,one-hot可以理解成三个独立事件 
2. 决策树是没有特征大小的概念的,只有特征处于他分布的哪一部分的概念 
one-hot可以解决线性可分问题 但是比不上label econding 
one-hot降维后的缺点: 
降维前可以交叉的降维后可能变得不能交叉 
树模型的训练过程: 
从根节点到叶子节点整条路中有多少个节点相当于交叉了多少次,所以树的模型是自行交叉 
eg:是否是长的 { 否(是→ 柚子,否 → 苹果) ,是 → 香蕉 } 园 cross 黄 → 形状 (圆,长) 颜色 (黄,红) one-hot度为4的样本 
使用树模型的叶子节点作为特征集交叉结果可以减少不必要的特征交叉的操作 或者减少维度和degree候选集 
eg 2 degree → 8的特征向量 树 → 3个叶子节点 
树模型:Ont-Hot + 高degree笛卡尔积 + lasso 要消耗更少的计算量和计算资源 
这就是为什么树模型之后可以stack线性模型 
n*m的输入样本 → 决策树训练之后可以知道在哪一个叶子节点上 → 输出叶子节点的index → 变成一个n*1的矩阵 → one-hot编码 → 可以得到一个n*o的矩阵(o是叶子节点的个数) → 训练一个线性模型 
典型的使用: GBDT + RF 
优点 : 节省做特征交叉的时间和空间 
如果只使用one-hot训练模型,特征之间是独立的 
对于现有模型的理解:(G(l(张量))): 
其中:l(·)为节点的模型 
G(·)为节点的拓扑方式 
神经网络:l(·)取逻辑回归模型 
G(·)取全连接的方式 
决策树: l(·)取LR 
G(·)取树形链接方式 
创新点: l(·)取 NB,SVM 单层NN ,等 
G(·)取怎样的信息传递方式

One-hot数据处理的更多相关文章

  1. Netty:数据处理流程

    Netty作为异步的.事件驱动一个网络通信框架,使用它可以帮助我们快速开发高性能高可靠性的网络服务. 为了更好的使用Netty来解决开发中的问题,学习Netty是很有必要的. Netty现在主流有三个 ...

  2. 《Caffe下跑AlxNet之数据处理过程》

    环境:Windows 最近用Caffe跑了一下AlxNet网络,现在总结一下数据处理部分:(处理过的数据打包链接:http://pan.baidu.com/s/1sl8M5ad   密码:ph1y) ...

  3. 七天学会ASP.NET MVC (三)——ASP.Net MVC 数据处理

    第三天我们将学习Asp.Net中数据处理功能,了解数据访问层,EF,以及EF中常用的代码实现方式,创建数据访问层和数据入口,处理Post数据,以及数据验证等功能. 系列文章 七天学会ASP.NET M ...

  4. ajax的使用:例题、ajax的数据处理

    需要注意的是,调用的封装的数据库,和jQuery的保存地址 一.注册 (1)写文本框来进行用户名的验证 <input type="text" id="uid&quo ...

  5. geotrellis使用(三)geotrellis数据处理过程分析

    之前简单介绍了geotrellis的工作过程以及一个简单的demo,最近在此demo的基础上实现了SRTM DEM数据的实时分析以及高程实时处理,下面我就以我实现的上述功能为例,简单介绍一下geotr ...

  6. geotrellis使用(四)geotrellis数据处理部分细节

    前面写了几篇博客介绍了Geotrellis的简单使用,具体链接在文后,今天我主要介绍一下Geotrellis在数据处理的过程中需要注意的细节,或者一些简单的经验技巧以供参考. 一.直接操作本地Geot ...

  7. Web页面实现后台数据处理进度与剩余时间的显示

    1.页面后台代码添加如下属性: /// <summary> /// 总数 /// </summary> private double total { set { Session ...

  8. Asp.net 面向接口可扩展框架之数据处理模块及EntityFramework扩展和Dapper扩展(含干货)

    接口数据处理模块是什么意思呢?实际上很简单,就是使用面向接口的思想和方式来做数据处理. 还提到EntityFramework和Dapper,EntityFramework和Dapper是.net环境下 ...

  9. 解密H264、AAC硬件解码的关键扩展数据处理

    通过上一篇文章,我们用ffmpeg分离出一个多媒体容器中的音视频数据,但是很可能这些数据是不能被正确解码的.为什么呢?因为在解码这些数据之前,需要对解码器做一些配置,典型的就是目前流行的高清编码“黄金 ...

  10. Map工具系列-06-销售营改增历史数据处理工具

    所有cs端工具集成了一个工具面板 -打开(IE) Map工具系列-01-Map代码生成工具说明 Map工具系列-02-数据迁移工具使用说明 Map工具系列-03-代码生成BySQl工具使用说明 Map ...

随机推荐

  1. 查阅Springboot官方文档方式----------------Springboot2.0.2最新稳定版

    1.登录官方网址: https://spring.io/ 如图所示: 2.选择PROJECTS,就可以看到spring所有的相关项目了. 点开后:其中就包括了Spingboot 3.版本选择,红圈部分 ...

  2. hadoop hive组件介绍及常用cli命令

    Hive架构图 Hive产生原因 1 关系型数据库以产生多年sql成熟 2 简化开发降低成本 3 java成员可编写udf函数 Hive是什么 Hive是基于hadoop的一个数据库工具,使用Hql作 ...

  3. php 获取当前在线用户数量

    <?php //在线人数统计 $filename='online.txt';//数据文件 $cookiename='VGOTCN_OnLineCount';//cookie名称 $onlinet ...

  4. Nios II——定制自己的IP1之Nios接口类型

    信号自动识别的接口前缀 接口前缀 接口类型 asi Avalon-ST宿端口(输入) aso Avalon-ST源端口(输出) avm Avalon-MM主端口 avs Avalon-MM从端口 ax ...

  5. redis for lack of backlog

    版本: redis-3.2.9 部署: 5台64G内存的物理机,每台机器启动2个redis进程组成5主5备集群,每台机器1个主1个备,并且错开互备. 问题: 发现redis进程占用内存高达40G,而且 ...

  6. android sqlite 模糊查询

    正确的做法Cursor cursor = sd.rawQuery("select * from contect where QT_CUSTOM like ?", new Strin ...

  7. Java的StringBuffer和StringBuilder类

    StringBuffer (字符串缓冲对象) 概念:用于表示可以修改的字符串,称为字符串缓冲对象 作用:使用运算符的字符串将自动创建字符串缓冲对象 例如: str1+str2的操作,实际上是把str1 ...

  8. iOS 百度地图截屏

    关于百度地图截屏的问题,发现不能用常用的方法进行载屏,常用的截屏方法所得到的图片地图瓦片底图会显示空白,网上给出的答案是这样的 :因为百度地图不是用UIKit实现的,所以得不到截图! 不过通过Open ...

  9. javascript变量浅析

    变量声明 javascript 使用var + 变量名 声明变量,因为javascript是弱类型语言, 所有我们可以随意更改已有变量的类型. var b=1; b='2', 另外不同于c#中的var ...

  10. Windows核心编程:第13章 内存体系结构

    Github https://github.com/gongluck/Windows-Core-Program.git //第13章 内存体系结构.cpp: 定义应用程序的入口点. // #inclu ...