题目描述

Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2)
现给出N,求Fib(2^n).

输入

本题有多组数据。第一行一个整数T,表示数据组数。
接下来T行每行一个整数N,含义如题目所示。
n≤10^15, T≤5

输出

输出共T行,每行一个整数为所求答案。
由于答案可能过大,请将答案mod 1125899839733759后输出

样例输入

2
2
31

样例输出

3
343812777493853


题解

费马小定理+矩阵乘法

傻逼题,根据费马小定理,指数在模 $p-1$ 意义下相等时幂数相等。

因此求出 $2^n$ 在模 $p-1$ 意义下的结果,再用矩阵乘法维护fib数列,求矩阵的 $2^n\ \text{mod}\ (p-1)$ 次幂即可。

模数较大因此使用快(man)速乘,时间复杂度 $O(\log^2n)$ 。

#include <cstdio>
#include <cstring>
#define mod 1125899839733759
typedef long long ll;
inline ll mul(ll x , ll y , ll p)
{
ll ans = 0;
while(y)
{
if(y & 1) ans = (ans + x) % p;
x = (x + x) % p , y >>= 1;
}
return ans;
}
inline ll pow(ll x , ll y , ll p)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = mul(ans , x , p);
x = mul(x , x , p) , y >>= 1;
}
return ans;
}
struct data
{
ll v[2][2];
data() {memset(v , 0 , sizeof(v));}
ll *operator[](int a) {return v[a];}
data operator*(data a)
{
data ans;
int i , j , k;
for(i = 0 ; i < 2 ; i ++ )
for(k = 0 ; k < 2 ; k ++ )
for(j = 0 ; j < 2 ; j ++ )
ans[i][j] = (ans[i][j] + mul(v[i][k] , a[k][j] , mod)) % mod;
return ans;
}
data operator^(ll y)
{
data x = *this , ans;
ans[0][0] = ans[1][1] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
}A;
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
ll n;
scanf("%lld" , &n) , n = pow(2 , n , mod - 1);
A[0][0] = 0 , A[0][1] = A[1][0] = A[1][1] = 1 , A = A ^ n;
printf("%lld\n" , A[1][0]);
}
return 0;
}

【bzoj5118】Fib数列2 费马小定理+矩阵乘法的更多相关文章

  1. Fib数列2 费马小定理+矩阵乘法

    题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘

  2. [bzoj5118]Fib数列2_费马小定理_矩阵乘法

    Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...

  3. bzoj5118: Fib数列2(费马小定理+矩阵快速幂)

    题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...

  4. HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂

    MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i )   ( i>=3) mod 1000000007 是质数 , 依据费马小定理  a^phi( p ) = 1 ( ...

  5. HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)

    M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  6. 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列

    [题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...

  7. HDOJ 5667 Sequence//费马小定理 矩阵快速幂

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意:如题给了一个函数式,给你a,b,c,n,p的值,叫你求f(n)%p的值 思路:先对函数取以a为 ...

  8. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. LightOJ 1419 – Necklace Polya计数+费马小定理求逆元

    题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...

随机推荐

  1. iis配置绑定二级域名的问题

    最近用destoon给客户做一个网站,涉及到站内企业网站的二级域名解析的问题,iis怎么配置绑定子目录绑定二级域名呢,查了好多资料,没有一个给出具体步骤的 基本是一些概念,不过看了这些东西基本理解了泛 ...

  2. flask 入门(二)

    Windows(提前安好virtualenv:pip  install  virtualenv) 一.准备: 1.启动pycharm 2.创建flask项目 二.基本库安装和设置 1.创建沙盒virt ...

  3. 20155216 Exp6 信息搜集与漏洞扫描

    Exp6 信息搜集与漏洞扫描 实践内容 信息搜集 whois查询 使用whois查询域名注册信息,查询百度服务器(进行whois查询时去掉www等前缀,因为注册域名时通常会注册一个上层域名,子域名由自 ...

  4. Vultr搭建SS服务

    购买VPS VPS又叫虚拟服务器,相当于是讲物理服务器的资源进行虚拟划分然后分配给不同的用户使用. Vultr服务器按小时计费,最低0.004美元/h,算起来2.5美元/月,且destory掉服务器是 ...

  5. 20155325 Exp3 免杀原理与实践

    基础问题回答 杀软是如何检测出恶意代码的? 1.1 基于特征码的检测 1.1.1 特征库举例-Snort 1.2 启发式恶意软件检测 1.3 基于行为的恶意软件检测 免杀是做什么? 一般是对恶意软件做 ...

  6. Luogu P1196 [NOI2002]银河英雄传说

    一年没写博客了(滑稽). 这道题很玄学,导致自己都有一个坑人的问题求解.如果有大佬有能力求帮助:https://www.luogu.org/discuss/show?postid=30231 再来讲一 ...

  7. Scala学习(二)练习

    Scala控制结构和函数&练习 1. 一个数字如果为正数,则它的signum为1:如果是负数,则signum为-1:如果为0,则signum为0:编写一个函数来计算这个值 简单逻辑判断: 测试 ...

  8. HashMap 源码解析(一)之使用、构造以及计算容量

    目录 简介 集合和映射 HashMap 特点 使用 构造 相关属性 构造方法 tableSizeFor 函数 一般的算法(效率低, 不值得借鉴) tableSizeFor 函数算法 效率比较 tabl ...

  9. UWP简单示例(一):快速合成音乐MV

    说明 本文发布时间较早,内容可能已过时.最新动态请关注 TypeScript 版本.(2019 年 3 月 注) 在线演示: 音频可视化(TypeScript) 准备 IDE:Visual Studi ...

  10. stl源码剖析 详细学习笔记 hashset hashmap

    //---------------------------15/03/26---------------------------- //hash_set { /* hash_set概述: 1:这是一个 ...