题目描述

Fib定义为Fib(0)=0,Fib(1)=1,对于n≥2,Fib(n)=Fib(n-1)+Fib(n-2)
现给出N,求Fib(2^n).

输入

本题有多组数据。第一行一个整数T,表示数据组数。
接下来T行每行一个整数N,含义如题目所示。
n≤10^15, T≤5

输出

输出共T行,每行一个整数为所求答案。
由于答案可能过大,请将答案mod 1125899839733759后输出

样例输入

2
2
31

样例输出

3
343812777493853


题解

费马小定理+矩阵乘法

傻逼题,根据费马小定理,指数在模 $p-1$ 意义下相等时幂数相等。

因此求出 $2^n$ 在模 $p-1$ 意义下的结果,再用矩阵乘法维护fib数列,求矩阵的 $2^n\ \text{mod}\ (p-1)$ 次幂即可。

模数较大因此使用快(man)速乘,时间复杂度 $O(\log^2n)$ 。

#include <cstdio>
#include <cstring>
#define mod 1125899839733759
typedef long long ll;
inline ll mul(ll x , ll y , ll p)
{
ll ans = 0;
while(y)
{
if(y & 1) ans = (ans + x) % p;
x = (x + x) % p , y >>= 1;
}
return ans;
}
inline ll pow(ll x , ll y , ll p)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = mul(ans , x , p);
x = mul(x , x , p) , y >>= 1;
}
return ans;
}
struct data
{
ll v[2][2];
data() {memset(v , 0 , sizeof(v));}
ll *operator[](int a) {return v[a];}
data operator*(data a)
{
data ans;
int i , j , k;
for(i = 0 ; i < 2 ; i ++ )
for(k = 0 ; k < 2 ; k ++ )
for(j = 0 ; j < 2 ; j ++ )
ans[i][j] = (ans[i][j] + mul(v[i][k] , a[k][j] , mod)) % mod;
return ans;
}
data operator^(ll y)
{
data x = *this , ans;
ans[0][0] = ans[1][1] = 1;
while(y)
{
if(y & 1) ans = ans * x;
x = x * x , y >>= 1;
}
return ans;
}
}A;
int main()
{
int T;
scanf("%d" , &T);
while(T -- )
{
ll n;
scanf("%lld" , &n) , n = pow(2 , n , mod - 1);
A[0][0] = 0 , A[0][1] = A[1][0] = A[1][1] = 1 , A = A ^ n;
printf("%lld\n" , A[1][0]);
}
return 0;
}

【bzoj5118】Fib数列2 费马小定理+矩阵乘法的更多相关文章

  1. Fib数列2 费马小定理+矩阵乘法

    题解: 费马小定理 a^(p-1)=1(mod p) 这里推广到矩阵也是成立的 所以我们可以对(2^n)%(p-1) 然后矩阵乘法维护就好了 模数较大使用快速乘

  2. [bzoj5118]Fib数列2_费马小定理_矩阵乘法

    Fib数列2 bzoj-5118 题目大意:求Fib($2^n$). 注释:$1\le n\le 10^{15}$. 想法:开始一看觉得一定是道神题,多好的题面啊?结果...妈的,模数是质数,费马小定 ...

  3. bzoj5118: Fib数列2(费马小定理+矩阵快速幂)

    题目大意:求$fib(2^n)$ 就是求fib矩阵的(2^n)次方%p,p是质数,根据费马小定理有 注意因为模数比较大会爆LL,得写快速乘法... #include<bits/stdc++.h& ...

  4. HDOJ 4549 M斐波那契数列 费马小定理+矩阵高速幂

    MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i )   ( i>=3) mod 1000000007 是质数 , 依据费马小定理  a^phi( p ) = 1 ( ...

  5. HDU 4549 (费马小定理+矩阵快速幂+二分快速幂)

    M斐波那契数列 Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Statu ...

  6. 【费马小定理+矩阵快速幂】HDU4549——M斐波那契数列

    [题目大意] M斐波那契数列F[n]是一种整数数列,它的定义如下:F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 )现在给出a, b, n,求出F[ ...

  7. HDOJ 5667 Sequence//费马小定理 矩阵快速幂

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=5667 题意:如题给了一个函数式,给你a,b,c,n,p的值,叫你求f(n)%p的值 思路:先对函数取以a为 ...

  8. M斐波那契数列(矩阵快速幂+费马小定理)

    M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Sub ...

  9. LightOJ 1419 – Necklace Polya计数+费马小定理求逆元

    题意:给你n个珠子可以染成k种颜色,旋转后相同的视为一种,问共有几种情况 思路:开始按照一般的排列组合做发现情况太多且要太多运算,查了下发现此题是组合中Polya定理模板题- 学的浅只能大致一说公式S ...

随机推荐

  1. $Luogu P2029$ 跳舞 题解

    一道不是十分水的\(dp\). 首先我们考虑\(dp\)方程的构造.起初我定义的状态是\(dp_{i,j}\)表示前\(i\)个格子,总共跳了\(j\)次的最大得分.但事实上它并不可以转移,因为我们不 ...

  2. C# 自定义类型转换

    1.显式转换和隐式转换: ; long b=a; // 从int到long的隐式转换 int c=(int) b; // 从long到int是显式转换 ------------------------ ...

  3. linux找到目录下所有目录文件

    想要删除掉该目录下的所有文件类型是目录的文件? 这样运行: $ ls -F | grep /$ | xargs rm -rf ls 中F参数,作用是能把目录文件的名字后边加上一个斜杠/ 然后匹配以斜杠 ...

  4. tomcat-在cmd窗口启动Tomcat

    平时,一般使用tomcat/bin/startup.bat目录在windows环境启动Tomcat,或者使用IDE配置后启动. 下面来简单介绍下如果在cmd窗口直接输入命令启动Tomcat: 1.将t ...

  5. c# 无边框窗体的边框阴影

    Windows API: using System; using System.Collections.Generic; using System.ComponentModel; using Syst ...

  6. 20155239吕宇轩《网络对抗》Exp3 免杀原理与实践

    20155239吕宇轩<网络对抗>Exp3 免杀原理与实践 实验过程 Kali使用上次实验msfvenom产生后门的可执行文件,上传到老师提供的网址http://www.virscan.o ...

  7. python 单体模式 的几种实现

    这是本人的一篇学习笔记. 本文用 python 实现单体模式,参考了这里 一.修改父类的 __dict__ class Borg: _shared_state = {} def __init__(se ...

  8. Linux环境中Qt程序的手工发布

    Linux环境中Qt程序的手工发布

  9. 【亲测有效】Nodepad++/Sublime Text3中Python脚本运行出现语法错误:IndentationError: unindent does not match any outer indentation level解决策略

    我在开发游戏的时候,发现一个python脚本,本来都运行好好的,然后写了几行代码,而且也都确保每行都对齐了,但是运行的时候,却出现语法错误: IndentationError: unindent do ...

  10. Outlook2013修改数据文件默认存放目录

    转载 当使用outlook 2013新建Email账户的时候,其数据文件(.ost文件)总是被保存在C盘默认目录“C:\Users\用户名\AppData\Local\Microsoft\Outloo ...