NOIP2011 计算系数
1计算系数
给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数。
【输入】
输入文件名为 factor.in。
共一行,包含 5 个整数,分别为 a,b,k,n,m,每两个整数之间用一个空格隔开。
【输出】
输出文件名为 factor.out。
输出共 1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对 10007 取 模后的结果。
【输入输出样例】
factor.in |
factor.out |
1 1 3 1 2 |
3 |
【数据范围】
对于 30%的数据,有 0≤k≤10; 对于 50%的数据,有 a = 1,b = 1;
对于 100%的数据,有 0≤k≤1,000,0≤n, m≤k,且 n + m = k,0≤a,b≤1,000,000。
【思路】
本题考查计算组合公式。可以知道答案就是C[k][m]*a^n*b^m。
有两种递归方式:
一种计算第n行,C[i]=C[i-1]*(k-i+1)/i 但实践得知这种递推的方式不能用模运算。
一种计算是把表全部递推出来 C[k][i]=C[k-1][i]+C[k-1][i-1];这种方法可以用模且时间足够。
【代码】
#include<iostream>
using namespace std;
const int MOD= ;
long long C[][];
int a,b,k,n,m;
int main() {
cin>>a>>b>>k>>n>>m;
for(int i=;i<=k;i++) {
C[i][]=;C[i][i]=;
for(int j=;j<=i-;j++) C[i][j]=(C[i-][j]+C[i-][j-])%MOD;
}
long long res=;
for(int i=;i<=n;i++) res=(res*a)%MOD; //a^n
for(int i=;i<=m;i++) res=(res*b)%MOD; //b^m
res=(res*C[k][m])%MOD;
cout<<res;
return ;
}
NOIP2011 计算系数的更多相关文章
- luoguP1313 [NOIp2011]计算系数 [组合数学]
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- [NOIP2011] 计算系数(二项式定理)
题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...
- [noip2011]计算系数+二项式定理证明
大水题,二项式定理即可(忘得差不多了) 对于一个二项式,\((a+b)^n\)的结果为 \(\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k}b^k\) 证明: 由数学归纳法,当 ...
- NOIP2011计算系数;
#include<cmath> #include<algorithm> #include<stdio.h> #include<iostream> #de ...
- NOIP 2011 计算系数
洛谷 P1313 计算系数 洛谷传送门 JDOJ 1747: [NOIP2011]计算系数 D2 T1 JDOJ传送门 Description 给定一个多项式(ax + by)k,请求出多项式展开后x ...
- 一本通1648【例 1】「NOIP2011」计算系数
1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms 内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...
- NOIP2011 day2 第一题 计算系数
计算系数 NOIP2011 day2 第一题 描述 给定一个多项式(ax+by)^k,请求出多项式展开后x^n*y^m项的系数. 输入格式 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m, ...
- 题解 【NOIP2011】计算系数
[NOIP2011]计算系数 Description 给定一个多项式 (ax+by)^k ,请求出多项式展开后 x^n * y^m 项的系数. Input 共一行,包含 5 个整数,分别为 a,b,k ...
- 洛谷P1313 [NOIP2011提高组Day2T1]计算系数
P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...
随机推荐
- MySQL的基本命令
MySQL的基本命令 启动:net start mySql; 进入:mysql -u root -p/mysql -h localhost -u root -p databaseName; 列出数据库 ...
- leetcode5 Implement strstr() 实现strstr函数功能
Implement strstr() 实现strstr函数功能 whowhoha@outlook.com Question: Implement strstr(). Returns the index ...
- 深入浅出 Java 8 Lambda 表达式
摘要:此篇文章主要介绍 Java8 Lambda 表达式产生的背景和用法,以及 Lambda 表达式与匿名类的不同等.本文系 OneAPM 工程师编译整理. Java 是一流的面向对象语言,除了部分简 ...
- 李洪强iOS开发之OC[018]对象和方法之间的关系
// // main.m // 18 - 对象和方法之间的关系 // // Created by vic fan on 16/7/14. // Copyright © 2016年 李洪强. A ...
- [Unity菜鸟] Unity读XML
1. 在Unity中调试可行,发布成exe可行,发布成web不行 Application.dataPath 在Unity中调试是在“..Assets”文件夹下, 发布成exe文件是在“..yourNa ...
- C#基础精华07(委托事件,委托的使用,匿名方法)
1.委托概述 委托是一种数据类型,像类一样(可以声明委托类型变量).方法参数可以是int.string.类类型 void M1(int n){ } √ void M2(string s){ } √ ...
- Apache James搭建内网邮件服务器
Apache James搭建内网邮件服务器 极客521 | 极客521 2014-08-21 148 阅读 java 大概之前两个礼拜的日子,讨论会介绍了关于了.net内网邮件服务器的搭建.所以自己也 ...
- Consistent Hashing算法-搜索/负载均衡
在做服务器负载均衡时候可供选择的负载均衡的算法有很多,包括: 轮循算法(Round Robin).哈希算法(HASH).最少连接算法(Least Connection).响应速度算法(Respons ...
- Monitor vs WaitHandle
http://stackoverflow.com/questions/1355398/monitor-vs-waithandle-based-thread-sync A problem with Mo ...
- Android开发UI之在子线程中更新UI
转自第一行代码-Android Android是不允许在子线程中进行UI操作的.在子线程中去执行耗时操作,然后根据任务的执行结果来更新相应的UI控件,需要用到Android提供的异步消息处理机制. 代 ...