1计算系数

给定一个多项式 (ax + by)k ,请求出多项式展开后 x n y m 项的系数。

【输入】

输入文件名为 factor.in。

共一行,包含 5 个整数,分别为 a,b,k,n,m,每两个整数之间用一个空格隔开。

【输出】

输出文件名为 factor.out。

输出共 1 行,包含一个整数,表示所求的系数,这个系数可能很大,输出对 10007 取 模后的结果。

【输入输出样例】

factor.in

factor.out

1 1 3 1 2

3

【数据范围】

对于 30%的数据,有 0≤k≤10; 对于 50%的数据,有 a = 1,b = 1;

对于 100%的数据,有 0≤k≤1,000,0≤n, m≤k,且 n + m = k,0≤a,b≤1,000,000。

【思路】

本题考查计算组合公式。可以知道答案就是C[k][m]*a^n*b^m。

有两种递归方式:

一种计算第n行,C[i]=C[i-1]*(k-i+1)/i  但实践得知这种递推的方式不能用模运算。

一种计算是把表全部递推出来 C[k][i]=C[k-1][i]+C[k-1][i-1];这种方法可以用模且时间足够。

【代码】

 #include<iostream>
using namespace std;
const int MOD= ;
long long C[][];
int a,b,k,n,m;
int main() {
cin>>a>>b>>k>>n>>m;
for(int i=;i<=k;i++) {
C[i][]=;C[i][i]=;
for(int j=;j<=i-;j++) C[i][j]=(C[i-][j]+C[i-][j-])%MOD;
}
long long res=;
for(int i=;i<=n;i++) res=(res*a)%MOD; //a^n
for(int i=;i<=m;i++) res=(res*b)%MOD; //b^m
res=(res*C[k][m])%MOD;
cout<<res;
return ;
}

 

NOIP2011 计算系数的更多相关文章

  1. luoguP1313 [NOIp2011]计算系数 [组合数学]

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  2. [NOIP2011] 计算系数(二项式定理)

    题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别为 a ,b ,k , ...

  3. [noip2011]计算系数+二项式定理证明

    大水题,二项式定理即可(忘得差不多了) 对于一个二项式,\((a+b)^n\)的结果为 \(\sum_{k=0}^{k<=n}C_{n}^{k}a^{n-k}b^k\) 证明: 由数学归纳法,当 ...

  4. NOIP2011计算系数;

    #include<cmath> #include<algorithm> #include<stdio.h> #include<iostream> #de ...

  5. NOIP 2011 计算系数

    洛谷 P1313 计算系数 洛谷传送门 JDOJ 1747: [NOIP2011]计算系数 D2 T1 JDOJ传送门 Description 给定一个多项式(ax + by)k,请求出多项式展开后x ...

  6. 一本通1648【例 1】「NOIP2011」计算系数

    1648: [例 1]「NOIP2011」计算系数 时间限制: 1000 ms         内存限制: 524288 KB [题目描述] 给定一个多项式 (ax+by)k ,请求出多项式展开后 x ...

  7. NOIP2011 day2 第一题 计算系数

    计算系数 NOIP2011 day2 第一题 描述 给定一个多项式(ax+by)^k,请求出多项式展开后x^n*y^m项的系数. 输入格式 共一行,包含5 个整数,分别为 a ,b ,k ,n ,m, ...

  8. 题解 【NOIP2011】计算系数

    [NOIP2011]计算系数 Description 给定一个多项式 (ax+by)^k ,请求出多项式展开后 x^n * y^m 项的系数. Input 共一行,包含 5 个整数,分别为 a,b,k ...

  9. 洛谷P1313 [NOIP2011提高组Day2T1]计算系数

    P1313 计算系数 题目描述 给定一个多项式(by+ax)^k,请求出多项式展开后x^n*y^m 项的系数. 输入输出格式 输入格式: 输入文件名为factor.in. 共一行,包含5 个整数,分别 ...

随机推荐

  1. Android名词解释

    System Bars.Status Bar.Navigation Bar System Bars-->the Status bars and Navigation bars.

  2. ActivePython2.7 +Firefly1.2.2+WIN7服务器搭建过程(已通过)

    原地址:http://www.9miao.com/question-15-54027.html 1.ActivePython2.7 版本(内部已经包含easy_install,pywin32)2.所需 ...

  3. Android 文字链接 文字点击时的背景颜色

    案例:实现“忘记密码?”这个链接,并且在按下的时候改变颜色. 方法一:这个可以用TextView实现: 主界面main.xml: <?xml version="1.0" en ...

  4. JavaWeb学习总结(四十九)——简单模拟Sping MVC

    在Spring MVC中,将一个普通的java类标注上Controller注解之后,再将类中的方法使用RequestMapping注解标注,那么这个普通的java类就够处理Web请求,示例代码如下: ...

  5. Android ListView避免多线程加载一个同一资源

    当我们的ListView中的Item包含图片,而且这些图片是同一资源,我们用多线程去加载图片,这时候可能就发生了这种情况. 比如线程是人,第一个人去做加载图片到缓存的工作,还没做好时第二个人要这同一张 ...

  6. P134、面试题22:栈的压入、弹出序列

    题目:输入两个整数序列,第一个序列表示栈的压入顺序,请判断第二个序列是否为该栈的弹出顺序.假设压入栈的所有数字均不相等.例如序列1.2.3.4.5是某栈的压栈序列,序列4,5,3,2,1是该压栈序列对 ...

  7. 8款必备的免费移动Web开发框架(HTML5/JS)

    标签:JavaScript HTML5 移动开发 Web开发 jQuery 应用程序框架 插件 概述:随着智能手机和平板电脑的普及,移动开发逐渐成为众多开发者追逐的潮流.拥有一款优秀的移动Web开发框 ...

  8. poj3308Paratroopers(dinic)

    http://poj.org/problem?id=3308 给两个定义 最小割:对于图中的两个点(一般为源点和汇点)来说,如果把图中的一些边去掉,如果它们之间无法连通的话,则这些边组成的集合就叫为割 ...

  9. 宏ut_2pow_remainder

    求余数 12%8=4 n%m也能计算出余数,但效率可能比位操作要低一些 /*************************************************************// ...

  10. Eclipse环境下JBoss调试,解决引用的工程不被部署的问题

    其实算是一个很小的经验,在eclipse环境下进行jboss的部署,因为要定义某公共包的问题,将代码down下来做了个工程,部署时发现jboss提示:class not found! 从jboss部署 ...