Given a basis $U=(u_1,\cdots,u_n)$ not necessarily orthonormal, in $\scrH$, how would you compute the biorthogonal basis $\sex{v_1,\cdots,v_n}$? Find a formula that expresses $\sef{v_j,x}$ for each $x\in\scrH$ and $j=1,\cdots,k$ in terms of Gram matrices.

Soluton. Let $V=(v_1,\cdots,v_k)$, then $$\bex V^*U=I_n\lra U^*V=I_n. \eex$$ We may just set $v_i$ to be the solution of the linear system $U^*x=e_i$, where $e_i=(\underbrace{0,\cdots,1}_{i},\cdots, 0)^T$. Suppose now $$\bex x=\sum_{j=1}^n x_jv_j\in \scrH, \eex$$ then $$\bex \sef{v_i,x}=\sum_{j=1}^n \sef{v_i,v_j}x_j,\quad i=1,\cdots,n. \eex$$ And hence $$\bex \sex{\ba{cc} \sef{v_1,x}\\ \vdots\\ \sef{v_n,x} \ea}=\sex{\sef{v_i,v_j}}\sex{\ba{cc} x_1\\\vdots\\ x_n \ea}. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]PrI.6.1的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]Contents

    I find it may cost me so much time in doing such solutions to exercises and problems....I am sorry t ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8

    For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ c ...

随机推荐

  1. HubbleDotNet开源全文搜索组件相关资源

    系统简介 HubbleDotNet 是一个基于.net framework 的开源免费的全文搜索数据库组件.开源协议是 Apache 2.0.HubbleDotNet提供了基于SQL的全文检索接口,使 ...

  2. java优化占用内存的方法(一)

    java做的系统给人的印象是什么?占 内存!说道这句话就会有N多人站出来为java辩护,并举出一堆的性能测试报告来证明这一点.其实从理论上来讲java做的系统并不比其他语言开发出来的 系统更占用内存, ...

  3. Java注解处理器(转)

    Java中的注解(Annotation)是一个很神奇的东西,特别现在有很多Android库都是使用注解的方式来实现的.一直想详细了解一下其中的原理.很有幸阅读到一篇详细解释编写注解处理器的文章.本文的 ...

  4. 用于软件包管理的21个Linux YUM命令

    FROM:http://os.51cto.com/art/201309/411895.htm YUM(Yellowdog Updater Modified)是一款开源命令行及图形化软件包管理工具,面向 ...

  5. Contest2037 - CSU Monthly 2013 Oct (problem B :Scoop water)

    http://acm.csu.edu.cn/OnlineJudge/problem.php?cid=2037&pid=1 [题解]:卡特兰数取模 h(n) = h(n-1)*(4*n-2)/( ...

  6. flex toolTip样式设置

        需要3个文件.一个是样式类,一个样式文件,一个是mxml文件. ●MyToolTip.as package{ import mx.core.UITextField; import mx.ski ...

  7. ./configure详解

    'configure'脚本有大量的命令行选项.对不同的软件包来说,这些选项可能会有变化,但是许多基本的选项是不会改变的.带上'--help'选项执行'configure'脚本可以看到可用的所有选项.尽 ...

  8. [转载]线程间操作无效: 从不是创建控件“ListBox1”的线程访问它

    解决方法有两种: 1.Control.CheckForIllegalCrossThreadCalls = false 2.用委托解决线程安全问题

  9. 《Publish or Perish》——从某种角度来说,我们也算和世界同步了呢。

  10. IOS xib生成界面和代码生成界面两种方式混合

    应用程序代理类 WKAppDelegate.m // // WKAppDelegate.m // HelloWorld // // Created by easy5 on 13-9-18. // Co ...