1.Link:

http://poj.org/problem?id=3239

2.Content:

Solution to the n Queens Puzzle
Time Limit: 1000MS   Memory Limit: 131072K
Total Submissions: 3459   Accepted: 1273   Special Judge

Description

The eight queens puzzle is the problem of putting eight chess queens on an 8 × 8 chessboard such that none of them is able to capture any other. The puzzle has been generalized to arbitrary n × n boards. Given n, you are to find a solution to the n queens puzzle.

Input

The input contains multiple test cases. Each test case consists of a single integer n between 8 and 300 (inclusive). A zero indicates the end of input.

Output

For each test case, output your solution on one line. The solution is a permutation of {1, 2, …, n}. The number in the ith place means the ith-column queen in placed in the row with that number.

Sample Input

8
0

Sample Output

5 3 1 6 8 2 4 7

Source

3.Method:

一开始用8皇后的方法,发现算不出来。

只能通过搜索,可以利用构造法,自己也想不出来构造,所以直接套用了别人的构造公式

感觉没啥意义,直接就用别人的代码提交了,也算是完成一道题目了

构造方法:

http://www.cnblogs.com/rainydays/archive/2011/07/12/2104336.html

一、当n mod 6 != 2 且 n mod 6 != 3时,有一个解为:
2,4,6,8,...,n,1,3,5,7,...,n-1        (n为偶数)
2,4,6,8,...,n-1,1,3,5,7,...,n        (n为奇数)
(上面序列第i个数为ai,表示在第i行ai列放一个皇后;...省略的序列中,相邻两数以2递增。下同)
二、当n mod 6 == 2 或 n mod 6 == 3时,
(当n为偶数,k=n/2;当n为奇数,k=(n-1)/2)
k,k+2,k+4,...,n,2,4,...,k-2,k+3,k+5,...,n-1,1,3,5,...,k+1        (k为偶数,n为偶数)
k,k+2,k+4,...,n-1,2,4,...,k-2,k+3,k+5,...,n-2,1,3,5,...,k+1,n    (k为偶数,n为奇数)
k,k+2,k+4,...,n-1,1,3,5,...,k-2,k+3,...,n,2,4,...,k+1            (k为奇数,n为偶数)
k,k+2,k+4,...,n-2,1,3,5,...,k-2,k+3,...,n-1,2,4,...,k+1,n        (k为奇数,n为奇数)

第二种情况可以认为是,当n为奇数时用最后一个棋子占据最后一行的最后一个位置,然后用n-1个棋子去填充n-1的棋盘,这样就转化为了相同类型且n为偶数的问题。

若k为奇数,则数列的前半部分均为奇数,否则前半部分均为偶数。

4.Code:

http://blog.csdn.net/lyy289065406/article/details/6642789?reload

 /*代码一:构造法*/

 //Memory Time
//188K 16MS #include<iostream>
#include<cmath>
using namespace std; int main(int i)
{
int n; //皇后数
while(cin>>n)
{
if(!n)
break; if(n%!= && n%!=)
{
if(n%==) //n为偶数
{
for(i=;i<=n;i+=)
cout<<i<<' ';
for(i=;i<=n-;i+=)
cout<<i<<' ';
cout<<endl;
}
else //n为奇数
{
for(i=;i<=n-;i+=)
cout<<i<<' ';
for(i=;i<=n;i+=)
cout<<i<<' ';
cout<<endl;
}
}
else if(n%== || n%==)
{
if(n%==) //n为偶数
{
int k=n/;
if(k%==) //k为偶数
{
for(i=k;i<=n;i+=)
cout<<i<<' ';
for(i=;i<=k-;i+=)
cout<<i<<' ';
for(i=k+;i<=n-;i+=)
cout<<i<<' ';
for(i=;i<=k+;i+=)
cout<<i<<' ';
cout<<endl;
}
else //k为奇数
{
for(i=k;i<=n-;i+=)
cout<<i<<' ';
for(i=;i<=k-;i+=)
cout<<i<<' ';
for(i=k+;i<=n;i+=)
cout<<i<<' ';
for(i=;i<=k+;i+=)
cout<<i<<' ';
cout<<endl;
}
}
else //n为奇数
{
int k=(n-)/;
if(k%==) //k为偶数
{
for(i=k;i<=n-;i+=)
cout<<i<<' ';
for(i=;i<=k-;i+=)
cout<<i<<' ';
for(i=k+;i<=n-;i+=)
cout<<i<<' ';
for(i=;i<=k+;i+=)
cout<<i<<' ';
cout<<n<<endl;
}
else //k为奇数
{
for(i=k;i<=n-;i+=)
cout<<i<<' ';
for(i=;i<=k-;i+=)
cout<<i<<' ';
for(i=k+;i<=n-;i+=)
cout<<i<<' ';
for(i=;i<=k+;i+=)
cout<<i<<' ';
cout<<n<<endl;
}
}
}
}
return ;
}

Poj 3239 Solution to the n Queens Puzzle的更多相关文章

  1. Pat1128:N Queens Puzzle

    1128. N Queens Puzzle (20) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The & ...

  2. PAT 1128 N Queens Puzzle

    1128 N Queens Puzzle (20 分)   The "eight queens puzzle" is the problem of placing eight ch ...

  3. A1128. N Queens Puzzle

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboar ...

  4. PAT A1128 N Queens Puzzle (20 分)——数学题

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8×8 chessboar ...

  5. PAT甲级 1128. N Queens Puzzle (20)

    1128. N Queens Puzzle (20) 时间限制 300 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue The & ...

  6. PAT 1128 N Queens Puzzle[对角线判断]

    1128 N Queens Puzzle(20 分) The "eight queens puzzle" is the problem of placing eight chess ...

  7. PAT 甲级 1128 N Queens Puzzle

    https://pintia.cn/problem-sets/994805342720868352/problems/994805348915855360 The "eight queens ...

  8. 1128 N Queens Puzzle (20 分)

    The "eight queens puzzle" is the problem of placing eight chess queens on an 8 chessboard ...

  9. PAT_A1128#N Queens Puzzle

    Source: PAT A1128 N Queens Puzzle (20 分) Description: The "eight queens puzzle" is the pro ...

随机推荐

  1. C++析构函数为什么要为虚函数

    注:本文内容来源于zhice163博文,感谢作者的整理. .为什么基类的析构函数是虚函数? 在实现多态时,当用基类操作派生类,在析构时防止只析构基类而不析构派生类的状况发生. 下面转自网络:源地址 h ...

  2. C++中创建对象的时候加括号和不加括号的区别

    c++创建对象的语法有----- 1 在栈上创建 MyClass a; 2 在堆上创建加括号 MyClass *a= new MyClass(); 3 不加括号 MyClass *a = new My ...

  3. mysql 优化工具

    explain  profiling 建议提供以下信息 show table status like 'audit';show create table audit;show index from a ...

  4. mysql自动备份策略

    目标:每7天做一个完整备份,每天做一份binlog日志,第二周将之前的备份删除并产生新的完整备份和binlog日志,备份要求每天2:00自动完成 mysql 版本:mysql5.5 1.开启binlo ...

  5. php编程中容易忽略的地方

    一:fopen ( string $filename , string $mode [, bool $use_include_path = false [, resource $context ]] ...

  6. BootStrap2学习日记12---注册表单

    <form method="" action="" class="form-horizontal"> <frameset& ...

  7. CollatingOfData 之 JsonHelper

    1 using System; using System.Collections.Generic; using System.Linq; using System.Web; using System. ...

  8. nodejs的mysql模块学习(四)断开数据库连接

    断开连接有两种方式 end()函数 在这种情况下 所有先前排队的查询 仍然可以继续继续发送到服务器,但是如果在执行到断开连接的命令之前发生了致命的错误,那么end()将不会被执行 connection ...

  9. Android(java)学习笔记107-1:通过反射获得带参构造方法并且使用

    反射获得带参构造方法并且使用: 1. 获取字节码文件对象       Class c = Class.forName("cn.itcast_01.Person"); 2.获取带参构 ...

  10. android开发之路06(浅谈单例设计模式)

    设计模式之单例模式: 一.单例模式实现特点:①单例类在整个应用程序中只能有一个实例(通过私有无参构造器实现):②单例类必须自己创建这个实例并且可供其他对象访问(通过静态公开的访问权限修饰的getIns ...