题目链接:

题目

2753: [SCOI2012]滑雪与时间胶囊

Time Limit: 50 Sec

Memory Limit: 128 MB

问题描述

a180285非常喜欢滑雪。他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi。a180285能从景点i 滑到景点j 当且仅当存在一条i 和j 之间的边,且i 的高度不小于j。 与其他滑雪爱好者不同,a180285喜欢用最短的滑行路径去访问尽量多的景点。如果仅仅访问一条路径上的景点,他会觉得数量太少。于是a180285拿出了他随身携带的时间胶囊。这是一种很神奇的药物,吃下之后可以立即回到上个经过的景点(不用移动也不被认为是a180285 滑行的距离)。请注意,这种神奇的药物是可以连续食用的,即能够回到较长时间之前到过的景点(比如上上个经过的景点和上上上个经过的景点)。 现在,a180285站在1号景点望着山下的目标,心潮澎湃。他十分想知道在不考虑时间

胶囊消耗的情况下,以最短滑行距离滑到尽量多的景点的方案(即满足经过景点数最大的前提下使得滑行总距离最小)。你能帮他求出最短距离和景点数吗?

输入

输入的第一行是两个整数N,M。

接下来1行有N个整数Hi,分别表示每个景点的高度。

接下来M行,表示各个景点之间轨道分布的情况。每行3个整数,Ui,Vi,Ki。表示

编号为Ui的景点和编号为Vi的景点之间有一条长度为Ki的轨道。

输出

输出一行,表示a180285最多能到达多少个景点,以及此时最短的滑行距离总和。

样例

input

3 3

3 2 1

1 2 1

2 3 1

1 3 10

output

3 2

Hint

【数据范围】

对于30%的数据,保证 1<=N<=2000

对于100%的数据,保证 1<=N<=100000

对于所有的数据,保证 1<=M<=1000000,1<=Hi<=1000000000,1<=Ki<=1000000000。

题解

首先dfs一下,找到所有可达的点。

然后发现是个最小树形图的问题,但是朱刘算法会跑超时!

观察一下这道题的特殊性!

我们按照海拔来分类,先讨论比较高的点再讨论比较低的点,你会发现同一个海拔的点之间连得都是双向边,所以同一个海拔的点是可以用kruskal跑最小生成树的。

我们考虑两个相同海拔的连通,只能通过祖先或是同海拔的点,如果它们是通过后代来连通的话,那么它们之间必定是不连通的(有向边所导致的)所以我们对每条边先按终点的海拔降序排列,对相同的海拔按距离升序排序。然后跑kruskal最小生成树。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<map>
#include<algorithm>
#include<vector>
using namespace std; const int maxn = 1e5 + 10;
const int maxm = 2e6 + 10;
typedef long long LL;
int n,m; int fa[maxn], hi[maxn];
int find(int x) {
return fa[x] = fa[x] == x ? x : find(fa[x]);
} struct Edge {
int u, v, w;
Edge(int u, int v, int w) :u(u), v(v), w(w) {}
bool operator < (const Edge& tmp) const {
return hi[v]>hi[tmp.v] || hi[v] == hi[tmp.v] && w < tmp.w;
}
}; vector<int> G[maxn];
vector<Edge> egs, egs2;
void addEdge(int u, int v, int w) {
egs.push_back(Edge(u, v, w));
G[u].push_back(egs.size() - 1);
} int vis[maxn];
void dfs(int u) {
for (int i = 0; i < G[u].size(); i++) {
Edge e = egs[G[u][i]];
egs2.push_back(e);
if (!vis[e.v]) {
vis[e.v] = 1;
dfs(e.v);
}
}
} int main() {
scanf("%d%d", &n, &m);
for (int i = 1; i <= n; i++) scanf("%d", &hi[i]);
while (m--) {
int u, v,w;
scanf("%d%d%d", &u, &v,&w);
if (hi[u] < hi[v]) swap(u, v);
addEdge(u, v, w);
if (hi[u] == hi[v]) addEdge(v, u, w);
}
memset(vis, 0, sizeof(vis));
vis[1] = 1;
dfs(1);
sort(egs2.begin(), egs2.end());
for (int i = 1; i <= n; i++) fa[i] = i;
LL ans = 0; int cnt = 0;
for (int i = 0; i < egs2.size(); i++) {
Edge& e = egs2[i];
int pu = find(e.u);
int pv = find(e.v);
if (pu != pv) {
ans += e.w;
cnt++;
fa[pv] = pu;
}
}
printf("%d %lld\n", cnt + 1, ans);
return 0;
}

BZOJ 2753 [SCOI2012] 滑雪和时间胶囊 最小生成树的更多相关文章

  1. bzoj 2753: [SCOI2012]滑雪与时间胶囊 -- 最小生成树

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MB Description a180285非常喜欢滑雪.他来到一座雪山,这 ...

  2. bzoj 2753: [SCOI2012]滑雪与时间胶囊

    Description a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi. ...

  3. 【刷题】BZOJ 2753 [SCOI2012]滑雪与时间胶囊

    Description a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi. ...

  4. bzoj 2753: [SCOI2012] 滑雪与时间胶囊 Label:MST

    题目描述 a180285非常喜欢滑雪.他来到一座雪山,这里分布着M条供滑行的轨道和N个轨道之间的交点(同时也是景点),而且每个景点都有一编号i(1<=i<=N)和一高度Hi.a180285 ...

  5. 【BZOJ 2753】 2753: [SCOI2012]滑雪与时间胶囊 (分层最小树形图,MST)

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2457  Solved: 859 Descriptio ...

  6. 2753: [SCOI2012]滑雪与时间胶囊

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2633  Solved: 910 Descriptio ...

  7. 【最小树形图(奇怪的kruskal)】【SCOI 2012】【bzoj 2753】滑雪与时间胶囊

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec Memory Limit: 128 MB Submit: 1621 Solved: 570 Description ...

  8. bzoj2753[SCOI2012]滑雪与时间胶囊 最小生成树

    Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2843  Solved: 993[Submit][Status][Discuss] Descripti ...

  9. Bzoj2753 [SCOI2012]滑雪与时间胶囊

    2753: [SCOI2012]滑雪与时间胶囊 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 2282  Solved: 796 Descriptio ...

随机推荐

  1. Part 86 to 88 Talking about Multithreading in C#

    Part 86   Multithreading in C# What is a Process: Process is what the operating system uses to facil ...

  2. MySQL配置管理

    数据库的链接: 获取项目结果集和链接: package Dao; import java.sql.Connection; import java.sql.ResultSet; import java. ...

  3. 20150303--从SQL中获取数据的三级联动

    省市地区的三级联动,每变更一次所选地都需要提交,但是又不需要把整个页面提交,所以我们需要使用控件:UdataPanel.工具--AJAX扩展 还有ScriptManager,并要将其放在页面的最顶端. ...

  4. maven 练习

    新建项目: Next next next 新建项目后,MyEclipse会自动从远程仓库中下载支持包,需要几分钟左右时间. 项目结构图: HelloWorld.java public class He ...

  5. System Generator入门

      System generator 安装之后会在Simulin模块库中添加一些Xilinx FPGA专用的模块库,包括Basic Element,Communication,Control Logi ...

  6. tp中让头疼似懂非懂的create

    项目中多次用到create() 只能它是表单验证,不过好出错,痛下心扉好好了解理解它的来龙去脉和所用的用法 一:通过create() 方法或者 赋值的方法生成数据对象,然后写入数据库 $model = ...

  7. 【Qt】QDialog之屏蔽Esc键【转】

    简述 Qt中Esc键会在一些控件中默认的进行一些事件的触发,比如:QDialog,按下Esc键窗口消失.大多数情况下,我们不需要这么做,那么就需要对默认事件进行屏蔽. 简述 源码分析 事件过滤器 事件 ...

  8. Spring-Mybatis 异常记录(1)

    Spring  applicationconfig.xml如下 <?xml version="1.0" encoding="UTF-8"?> < ...

  9. Stanford parser学习:LexicalizedParser类分析

    上次(http://www.cnblogs.com/stGeekpower/p/3457746.html)主要是对应于javadoc写了下LexicalizedParser类main函数的功能,这次看 ...

  10. Mysql 的MYISAM引擎拷贝出现异常——Incorrect information in file 'xxx.frm'

    MYISAM引擎有三个文件 .FRM    存储表结构 .MYD    存储数据 .MYI   存储索引 当复制表时,将这三个文件同时复制到指定目录下. 异常处理: 1. Incorrect info ...