SRM 514 DIV1 500pt(DP)
给定一个H×W大小的矩阵,每个格子要么是1~9中的一个数,要么是".",要求你把“.”填成具体的数字(1~9),并且符合以下两个要求:
- 对于所有的整数r 和 c( 0 <= r <= H-n,0 <= c < W), 使得 F[r][c] + F[r+1][c] + ... + F[r+n-1][c] 是奇数.
- 对于所有的整数 r 和c(0 <= r < H,0 <= c <= W-m), 使得 F[r][c] + F[r][c+1] + ... + F[r][c+m-1] 是奇数
题解
我们可以发现F[r][c]和 F[r+n][c]的奇偶性是一样的,同样F[r][c]和F[c+m]也是同样的奇偶性,那么我们可以把F[r+p*n][c+q*m]的可以放的奇数和偶数的个数统计到odd[r][c]和even[r][c]中,矩阵就压缩成了n*m了!注意如果F[r+p*n][c+q*m]是个确定的数,如果是奇数,那么even[r][c]=0,反之odd[r][c]=0.
这样问题就转化成了求n×m的矩阵,每行和每列的和都是奇数的方案数!
接下来我们先预处理出每一行都是奇数和的状态的方案数cnt[i][mask],然后再进行DP,方程是dp[i][mask1^maks2]+=dp[i-1][mask1]*cnt[i][maks2],第i-1行的列状态数是mask1,第i行选取的行状态是mask2,那么形成的列状态就是mask1^maks2,最后的答案就是dp[n][(1<<m)-1],(1<<m)-1恰好表示每一列的状态都是奇数。这道题真是很赞,状态设计好巧妙~~,完全想不到啊!
代码:
typedef long long LL;
#define MOD 1000000007
LL odd[][], even[][];
LL dp[][ << ], cnt[][ << ];
class MagicalGirlLevelTwoDivOne
{
public:
int go(int num)
{
int ret = ;
while (num)
{
ret += num & ;
num >>= ;
}
return ret;
}
int theCount(vector <string> palette, int n, int m)
{
int x = palette.size(), y = palette[].size();
for (int i = ; i < n; i++)
for (int j = ; j < m; j++) odd[i][j] = even[i][j] = ;
for (int i = ; i < x; i++)
for (int j = ; j < y; j++)
{
if (palette[i][j] == '.')
{
odd[i % n][j % m] *= ;
odd[i % n][j % m] %= MOD;
even[i % n][j % m] *= ;
even[i % n][j % m] %= MOD;
}
else
{
int num = palette[i][j] - '';
if (num % == ) odd[i % n][j % m] = ;
else even[i % n][j % m] = ;
}
}
memset(cnt, , sizeof(cnt));
for (int i = ; i < n; i++)
for (int mask = ; mask < ( << m); mask++)
{
int tot = go(mask);
if (tot % == ) continue;
cnt[i][mask] = ;
for (int j = ; j < m; j++)
{
if (mask & ( << j))
cnt[i][mask] *= odd[i][j];
else cnt[i][mask] *= even[i][j];
cnt[i][mask] %= MOD;
}
}
memset(dp, , sizeof(dp));
dp[][] = ;
for (int i = ; i <= n; i++)
for (int mask1 = ; mask1 < ( << m); mask1++)
for (int mask2 = ; mask2 < ( << m); mask2++)
{
dp[i][mask1 ^ mask2] += (dp[i - ][mask1] * cnt[i - ][mask2])%MOD;
dp[i][mask1 ^ mask2] %= MOD;
}
return (int)dp[n][( << m) - ];
}
};
SRM 514 DIV1 500pt(DP)的更多相关文章
- SRM 511 DIV1 500pt(DP)
题目简述 给定n个数,两个人轮流取数,和之前两个人的取的数或起来,谁不能取数或者谁取到的数和之前的数或值为511谁输,问谁能够赢? 题解 刚开始的想法是直接搜,不过需要记录取过的值的状态,2^50显然 ...
- SRM 508 DIV1 500pt(DP)
题目简述 给定一个大小为 n的序列(n<=10)R,要求你计算序列A0, A1, ..., AN-1的数量,要求A序列满足A0 + A1 + ... + AN-1 = A0 | A1 | ... ...
- SRM 509 DIV1 500pt(DP)
题目简述 给定一个字符串,可以对其进行修改,删除,增加操作,相应的操作有对应的花费,要求你用最小的花费把字符串变为回文串 题目做法 先搞一遍floyed把各种操作的最小花费求出来,然后就是类似编辑距离 ...
- SRM 502 DIV1 500pt(DP)
题目简述 给定比赛时间T和n个题目,你可以在任意时间提交题目,每个题目有一个初始分数maxPoints[i],每个单位时间题目的分数将会减少pointsPerMinute[i],即如果在时间t解决了第 ...
- SRM 501 DIV1 500pt(DP)
题目简述 给定一个长度为n的序列,每个数值的范围为[-1,40],-1可以替换成0~40之间的数,要求你求出符合以下条件的序列有多少个? 1.每个数都是0~40之间的数 2.对于每一个数A[i],都需 ...
- SRM DIV1 500pt DP
SRM 501 DIV1 500pt SRM 502 DIV1 500pt SRM 508 DIV1 500pt SRM 509 DIV1 500pt SRM 511 DIV1 500pt SRM 5 ...
- SRM 358(1-250,500pt)
DIV1 250pt 题意:电视目前停留在第100台,有一个遥控器,可以向上或向下换台(需要按键一次),也可以按一些数字,然后直接跳到该台(需要按键次数等于数字数,不需要按确定键).但是,这个遥控一些 ...
- SRM 601(1-250pt,500pt)
DIV1 250pt 题意:有很多袋子,里面装有苹果和橘子(也可能没有),给出每个袋子里有多少个苹果,多少个橘子.如果每个袋子里含有水果的总数都不小于x个,则可以从每个袋子里都拿出x个水果(拿出苹果和 ...
- Topcoder SRM 643 Div1 250<peter_pan>
Topcoder SRM 643 Div1 250 Problem 给一个整数N,再给一个vector<long long>v; N可以表示成若干个素数的乘积,N=p0*p1*p2*... ...
随机推荐
- Retrofit2 源码解析
原文链接:http://bxbxbai.github.io/2015/12/13/retrofit2-analysis/ 公司里最近做的项目中网络框架用的就是Retrofit,用的多了以后觉得这个框架 ...
- Java 进行 RSA 加解密时不得不考虑到的那些事儿
1. 加密的系统不要具备解密的功能,否则 RSA 可能不太合适 公钥加密,私钥解密.加密的系统和解密的系统分开部署,加密的系统不应该同时具备解密的功能,这样即使黑客攻破了加密系统,他拿到的也只是一堆无 ...
- JCIFS是很不稳定的
我以前也试过这样登录失败,第二天就能登录成功了. JCIFS是很不稳定的. 如果是域登录可以这样 //DOMAIN_IP 域名服务(其实域名和域名服务器IP可以,不过用IP解析速度快很 ...
- Java API —— IO流(数据操作流 & 内存操作流 & 打印流 & 标准输入输出流 & 随机访问流 & 合并流 & 序列化流 & Properties & NIO)
1.操作基本数据类型的流 1) 操作基本数据类型 · DataInputStream:数据输入流允许应用程序以与机器无关方式从底层输入流中读取基本 Java 数据类型.应用程序可以使用数据输出 ...
- maven小项目注册服务(二)--captcha模块
验证码生成模块,配置信息基本和前面的模块一样.account-captcha需要提供的服务是生成随机的验证码主键,然后用户可以使用这个主键要求服务生成一个验证码图片,这个图片对应的值应该是随机的,最后 ...
- How to upgrade boost libary using apt-get ?
apt-get install libboost1.55-all-dev using version number between boost and all, but the preconditio ...
- c# webbrowser 随机点击链接
HtmlElementCollection hec = webBrowser1.Document.All; ; i < hec.Count; i++) { if (hec[i].GetAttri ...
- LA 3890 (半平面交) Most Distant Point from the Sea
题意: 给出一个凸n边形,求多边形内部一点使得该点到边的最小距离最大. 分析: 最小值最大可以用二分. 多边形每条边的左边是一个半平面,将这n个半平面向左移动距离x,则将这个凸多边形缩小了.如果这n个 ...
- UVa 548 Tree【二叉树的递归遍历】
题意:给出一颗点带权的二叉树的中序和后序遍历,找一个叶子使得它到根的路径上的权和最小. 学习的紫书:先将这一棵二叉树建立出来,然后搜索一次找出这样的叶子结点 虽然紫书的思路很清晰= =可是理解起来好困 ...
- [POJ 3498] March of the Penguins
March of the Penguins Time Limit: 8000MS Memory Limit: 65536K Total Submissions: 4378 Accepted: ...