LCS:给出两个序列S1和S2,求出的这两个序列的最大公共部分S3就是就是S1和S2的最长公共子序列了。公共部分

必须是以相同的顺序出现,但是不必要是连续的。

LCS具有最优子结构,且满足重叠子问题的性质。所以我们可以用动态规划来解决LCS问题。

由LCS问题的最优子结构可得出递归式:

长度的问题我们已经解决了,这次要解决输出最长子序列的问题,

我们采用一个标记函数Flag[i,j],当

①:C[i,j]=C[i-1,j-1]+1  时 标记Flag[i,j]="left_up";    (左上方箭头)

②:C[i-1,j]>=C[i,j-1]   时 标记Flag[i,j]="left";          (左箭头)

③: C[i-1,j]<C[i,j-1]     时 标记Flag[i,j]="up";            (上箭头)

例如:我输入两个序列X=acgbfhk,Y=cegefkh。

 1 using System;
2
3 namespace ConsoleApplication2
4 {
5 public class Program
6 {
7 static int[,] martix;
8
9 static string[,] flag;
10
11 static string str1 = "acgbfhk";
12
13 static string str2 = "cegefkh";
14
15 static void Main(string[] args)
16 {
17 martix = new int[str1.Length + 1, str2.Length + 1];
18
19 flag = new string[str1.Length + 1, str2.Length + 1];
20
21 LCS(str1, str2);
22
23 //打印子序列
24 SubSequence(str1.Length, str2.Length);
25
26 Console.Read();
27 }
28
29 static void LCS(string str1, string str2)
30 {
31 //初始化边界,过滤掉0的情况
32 for (int i = 0; i <= str1.Length; i++)
33 martix[i, 0] = 0;
34
35 for (int j = 0; j <= str2.Length; j++)
36 martix[0, j] = 0;
37
38 //填充矩阵
39 for (int i = 1; i <= str1.Length; i++)
40 {
41 for (int j = 1; j <= str2.Length; j++)
42 {
43 //相等的情况
44 if (str1[i - 1] == str2[j - 1])
45 {
46 martix[i, j] = martix[i - 1, j - 1] + 1;
47 flag[i, j] = "left_up";
48 }
49 else
50 {
51 //比较“左边”和“上边“,根据其max来填充
52 if (martix[i - 1, j] >= martix[i, j - 1])
53 {
54 martix[i, j] = martix[i - 1, j];
55 flag[i, j] = "left";
56 }
57 else
58 {
59 martix[i, j] = martix[i, j - 1];
60 flag[i, j] = "up";
61 }
62 }
63 }
64 }
65 }
66
67 static void SubSequence(int i, int j)
68 {
69 if (i == 0 || j == 0)
70 return;
71
72 if (flag[i, j] == "left_up")
73 {
74 Console.WriteLine("{0}: 当前坐标:({1},{2})", str2[j - 1], i - 1, j - 1);
75
76 //左前方
77 SubSequence(i - 1, j - 1);
78 }
79 else
80 {
81 if (flag[i, j] == "up")
82 {
83 SubSequence(i, j - 1);
84 }
85 else
86 {
87 SubSequence(i - 1, j);
88 }
89 }
90 }
91 }
92 }

由于直接绘图很麻烦,嘿嘿,我就用手机拍了张:

好,我们再输入两个字符串:

1         static string str1 = "abcbdab";
2
3 static string str2 = "bdcaba";

通过上面的两张图,我们来分析下它的时间复杂度和空间复杂度。

时间复杂度:构建矩阵我们花费了O(MN)的时间,回溯时我们花费了O(M+N)的时间,两者相加最终我们花费了O(MN)的时间。

空间复杂度:构建矩阵我们花费了O(MN)的空间,标记函数也花费了O(MN)的空间,两者相加最终我们花费了O(MN)的空间。

最长公共子序列LCS的更多相关文章

  1. 1006 最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). 比如两个串为: abcicba abdks ...

  2. 动态规划之最长公共子序列LCS(Longest Common Subsequence)

    一.问题描述 由于最长公共子序列LCS是一个比较经典的问题,主要是采用动态规划(DP)算法去实现,理论方面的讲述也非常详尽,本文重点是程序的实现部分,所以理论方面的解释主要看这篇博客:http://b ...

  3. 编程算法 - 最长公共子序列(LCS) 代码(C)

    最长公共子序列(LCS) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 题目: 给定两个字符串s,t, 求出这两个字符串最长的公共子序列的长度. 字符 ...

  4. C++版 - Lintcode 77-Longest Common Subsequence最长公共子序列(LCS) - 题解

    版权声明:本文为博主Bravo Yeung(知乎UserName同名)的原创文章,欲转载请先私信获博主允许,转载时请附上网址 http://blog.csdn.net/lzuacm. C++版 - L ...

  5. POJ 1458 Common Subsequence(最长公共子序列LCS)

    POJ1458 Common Subsequence(最长公共子序列LCS) http://poj.org/problem?id=1458 题意: 给你两个字符串, 要你求出两个字符串的最长公共子序列 ...

  6. 51Nod 1006:最长公共子序列Lcs(打印LCS)

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  7. 51nod 1006 最长公共子序列Lcs 【LCS/打印path】

    1006 最长公共子序列Lcs  基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  8. 每日一题-——最长公共子序列(LCS)与最长公共子串

    最长公共子序列(LCS) 思路: 代码: def LCS(string1,string2): len1 = len(string1) len2 = len(string2) res = [[0 for ...

  9. 51nod 1006:最长公共子序列Lcs

    1006 最长公共子序列Lcs 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 给出两个字符串A B,求A与B的最长公共子序列(子序列不要求是连续的). ...

  10. 动态规划之最长公共子序列(LCS)

    转自:http://segmentfault.com/blog/exploring/ LCS 问题描述 定义: 一个数列 S,如果分别是两个或多个已知数列的子序列,且是所有符合此条件序列中最长的,则 ...

随机推荐

  1. QTP之delphi试用感想一(自动化测试)

    这两天一直在琢磨自动化测试,自动化测试,其实与单元测试有一些相同之处,单元测试的目的也是可以一次写,多次运行,对于测试驱动及后期维护真是有非常多的好处,用自动化测试工具也是如何,主要目的是为了回归测试 ...

  2. Chrome中的消息循环

    主要是自己做个学习笔记吧,我经验也不是很丰富,以前学习多线程的时候就感觉写多线程程序很麻烦.主要是线程之间要通信,要切线程,要同步,各种麻烦.我本身的工作经历决定了也没有太多的工作经验,所以chrom ...

  3. windows环境下安装 zookeeper

    我们下载下来的zookeeper的安装包是.tar.gz格式的,但是还是可以在windows下运行. 下载地址 http://mirrors.hust.edu.cn/apache/zookeeper/ ...

  4. Jdk命令之jps

    jps -- Java Virtual Machine Process Status Tool jps命令类似于Linux下的ps命令,可以列出本机所有正在运行的java进程.

  5. Android ListView高度自适应和ScrollView冲突解决

    在ScrollView中嵌套使用ListView,ListView只会显示一行到两行的数据.起初我以为是样式的问题,一直在对XML文件的样式进行尝试性设置,但始终得不到想要的效果.后来在网上查了查,S ...

  6. PHP中该怎样防止SQL注入?

    因为用户的输入可能是这样的: ? 1 value'); DROP TABLE table;-- 那么SQL查询将变成如下: ? 1 INSERT INTO `table` (`column`) VAL ...

  7. Android开发之创建桌面快捷方式

    Android创建桌面快捷方式就是在桌面这个应用上创建一个快捷方式,桌面应用:launcher2 通过查看launcher2的清单文件: <!-- Intent received used to ...

  8. struct TABLE_SHARE

    struct TABLE_SHARE { TABLE_SHARE() {} /* Remove gcc warning */ /** Category of this table. */ TABLE_ ...

  9. ASCII码常用值

    大写字母 A~Z 65~90 小写字母a~z 97~122 数字0~9 48~ 57

  10. 8款PHP调试工具

    Web 开发并不是一项轻松的任务,有超级多服务端脚本语言提供给开发者,但是当前 PHP 因为具有额外的一些强大的功能而越来越流行.PHP 是最强大的服务端脚本语言之一,同时也是 web 开发者和设计者 ...