MapReduce编程系列 — 2:计算平均分
1、项目名称:
2、程序代码:
package com.averagescorecount; import java.io.IOException;
import java.util.Iterator;
import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class ScoreCount {
/*这个map的输入是经过InputFormat分解过的数据集,InputFormat的默认值是TextInputFormat,它针对文件,
*按行将文本切割成InputSplits,并用LineRecordReader将InputSplit解析成<key,value>对,
*key是行在文本中的位置,value是文件中的一行。
*/
public static class Map extends Mapper<LongWritable, Text, Text , IntWritable>{
public void map(LongWritable key , Text value , Context context ) throws IOException, InterruptedException{
String line = value.toString();
System.out.println("line:"+line); System.out.println("TokenizerMapper.map...");
System.out.println("Map key:"+key.toString()+" Map value:"+value.toString());
//将输入的数据首先按行进行分割
StringTokenizer tokenizerArticle = new StringTokenizer(line,"\n");
//分别对每一行进行处理
while (tokenizerArticle.hasMoreTokens()) {
//每行按空格划分
StringTokenizer tokenizerLine = new StringTokenizer(tokenizerArticle.nextToken());
String strName = tokenizerLine.nextToken();//学生姓名部分
String strScore= tokenizerLine.nextToken();//成绩部分 Text name = new Text(strName);
int scoreInt = Integer.parseInt(strScore); System.out.println("name:"+name+" scoreInt:"+scoreInt); context.write(name, new IntWritable(scoreInt));
System.out.println("context_map:"+context.toString());
}
System.out.println("context_map_111:"+context.toString());
}
} public static class Reduce extends Reducer<Text, IntWritable, Text, IntWritable>{
public void reduce(Text key , Iterable<IntWritable> values,Context context) throws IOException,InterruptedException{
int sum = 0;
int count = 0;
int score = 0;
System.out.println("reducer...");
System.out.println("Reducer key:"+key.toString()+" Reducer values:"+values.toString());
//设置迭代器
Iterator<IntWritable> iterator = values.iterator();
while (iterator.hasNext()) {
score = iterator.next().get();
System.out.println("score:"+score);
sum += score;
count++; }
int average = (int) sum/count;
System.out.println("key"+key+" average:"+average);
context.write(key, new IntWritable(average));
System.out.println("context_reducer:"+context.toString());
}
} public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = new Job(conf, "score count");
job.setJarByClass(ScoreCount.class); job.setMapperClass(Map.class);
job.setCombinerClass(Reduce.class);
job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
}
}
陈东伟 90
李宁 87
杨森 86
陈东奇 78
谭果 94
盖盖 83
陈洲立 68
陈东伟 96
李宁 82
杨森 85
陈东奇 72
谭果 97
盖盖 82
陈洲立 46
陈东伟 48
李宁 67
杨森 33
陈东奇 28
谭果 78
盖盖 87
4、运行过程:
14/09/20 19:31:16 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/09/20 19:31:16 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
14/09/20 19:31:16 WARN mapred.JobClient: No job jar file set. User classes may not be found. See JobConf(Class) or JobConf#setJar(String).
14/09/20 19:31:16 INFO input.FileInputFormat: Total input paths to process : 1
14/09/20 19:31:16 WARN snappy.LoadSnappy: Snappy native library not loaded
14/09/20 19:31:16 INFO mapred.JobClient: Running job: job_local_0001
14/09/20 19:31:16 INFO util.ProcessTree: setsid exited with exit code 0
14/09/20 19:31:16 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@4080b02f
14/09/20 19:31:16 INFO mapred.MapTask: io.sort.mb = 100
14/09/20 19:31:16 INFO mapred.MapTask: data buffer = 79691776/99614720
14/09/20 19:31:16 INFO mapred.MapTask: record buffer = 262144/327680
line:陈洲立 67
TokenizerMapper.map...
Map key:0 Map value:陈洲立 67
name:陈洲立 scoreInt:67
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:陈东伟 90
TokenizerMapper.map...
Map key:13 Map value:陈东伟 90
name:陈东伟 scoreInt:90
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:李宁 87
TokenizerMapper.map...
Map key:26 Map value:李宁 87
name:李宁 scoreInt:87
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:杨森 86
TokenizerMapper.map...
Map key:36 Map value:杨森 86
name:杨森 scoreInt:86
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:陈东奇 78
TokenizerMapper.map...
Map key:46 Map value:陈东奇 78
name:陈东奇 scoreInt:78
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:谭果 94
TokenizerMapper.map...
Map key:59 Map value:谭果 94
name:谭果 scoreInt:94
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:盖盖 83
TokenizerMapper.map...
Map key:69 Map value:盖盖 83
name:盖盖 scoreInt:83
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:陈洲立 68
TokenizerMapper.map...
Map key:79 Map value:陈洲立 68
name:陈洲立 scoreInt:68
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:陈东伟 96
TokenizerMapper.map...
Map key:92 Map value:陈东伟 96
name:陈东伟 scoreInt:96
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:李宁 82
TokenizerMapper.map...
Map key:105 Map value:李宁 82
name:李宁 scoreInt:82
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:杨森 85
TokenizerMapper.map...
Map key:115 Map value:杨森 85
name:杨森 scoreInt:85
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:陈东奇 72
TokenizerMapper.map...
Map key:125 Map value:陈东奇 72
name:陈东奇 scoreInt:72
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:谭果 97
TokenizerMapper.map...
Map key:138 Map value:谭果 97
name:谭果 scoreInt:97
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:盖盖 82
TokenizerMapper.map...
Map key:148 Map value:盖盖 82
name:盖盖 scoreInt:82
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:陈洲立 46
TokenizerMapper.map...
Map key:158 Map value:陈洲立 46
name:陈洲立 scoreInt:46
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:陈东伟 48
TokenizerMapper.map...
Map key:171 Map value:陈东伟 48
name:陈东伟 scoreInt:48
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:李宁 67
TokenizerMapper.map...
Map key:184 Map value:李宁 67
name:李宁 scoreInt:67
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:杨森 33
TokenizerMapper.map...
Map key:194 Map value:杨森 33
name:杨森 scoreInt:33
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:陈东奇 28
TokenizerMapper.map...
Map key:204 Map value:陈东奇 28
name:陈东奇 scoreInt:28
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:谭果 78
TokenizerMapper.map...
Map key:217 Map value:谭果 78
name:谭果 scoreInt:78
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:盖盖 87
TokenizerMapper.map...
Map key:227 Map value:盖盖 87
name:盖盖 scoreInt:87
context_map:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
line:
TokenizerMapper.map...
Map key:237 Map value:
context_map_111:org.apache.hadoop.mapreduce.Mapper$Context@d4cf771
14/09/20 19:31:16 INFO mapred.MapTask: Starting flush of map output
reducer...
Reducer key:李宁 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@63dbbdf2
score:82
score:87
score:67
key李宁 average:78
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@3d32487
reducer...
Reducer key:杨森 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@63dbbdf2
score:33
score:86
score:85
key杨森 average:68
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@3d32487
reducer...
Reducer key:盖盖 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@63dbbdf2
score:87
score:83
score:82
key盖盖 average:84
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@3d32487
reducer...
Reducer key:谭果 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@63dbbdf2
score:94
score:97
score:78
key谭果 average:89
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@3d32487
reducer...
Reducer key:陈东伟 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@63dbbdf2
score:48
score:90
score:96
key陈东伟 average:78
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@3d32487
reducer...
Reducer key:陈东奇 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@63dbbdf2
score:72
score:78
score:28
key陈东奇 average:59
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@3d32487
reducer...
Reducer key:陈洲立 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@63dbbdf2
score:68
score:67
score:46
key陈洲立 average:60
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@3d32487
14/09/20 19:31:16 INFO mapred.MapTask: Finished spill 0
14/09/20 19:31:16 INFO mapred.Task: Task:attempt_local_0001_m_000000_0 is done. And is in the process of commiting
14/09/20 19:31:17 INFO mapred.JobClient: map 0% reduce 0%
14/09/20 19:31:19 INFO mapred.LocalJobRunner:
14/09/20 19:31:19 INFO mapred.Task: Task 'attempt_local_0001_m_000000_0' done.
14/09/20 19:31:19 INFO mapred.Task: Using ResourceCalculatorPlugin : org.apache.hadoop.util.LinuxResourceCalculatorPlugin@5fc24d33
14/09/20 19:31:19 INFO mapred.LocalJobRunner:
14/09/20 19:31:19 INFO mapred.Merger: Merging 1 sorted segments
14/09/20 19:31:19 INFO mapred.Merger: Down to the last merge-pass, with 1 segments left of total size: 102 bytes
14/09/20 19:31:19 INFO mapred.LocalJobRunner:
reducer...
Reducer key:李宁 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@2407325d
score:78
key李宁 average:78
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@52403ee2
reducer...
Reducer key:杨森 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@2407325d
score:68
key杨森 average:68
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@52403ee2
reducer...
Reducer key:盖盖 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@2407325d
score:84
key盖盖 average:84
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@52403ee2
reducer...
Reducer key:谭果 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@2407325d
score:89
key谭果 average:89
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@52403ee2
reducer...
Reducer key:陈东伟 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@2407325d
score:78
key陈东伟 average:78
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@52403ee2
reducer...
Reducer key:陈东奇 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@2407325d
score:59
key陈东奇 average:59
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@52403ee2
reducer...
Reducer key:陈洲立 Reducer values:org.apache.hadoop.mapreduce.ReduceContext$ValueIterable@2407325d
score:60
key陈洲立 average:60
context_reducer:org.apache.hadoop.mapreduce.Reducer$Context@52403ee2
14/09/20 19:31:19 INFO mapred.Task: Task:attempt_local_0001_r_000000_0 is done. And is in the process of commiting
14/09/20 19:31:19 INFO mapred.LocalJobRunner:
14/09/20 19:31:19 INFO mapred.Task: Task attempt_local_0001_r_000000_0 is allowed to commit now
14/09/20 19:31:19 INFO output.FileOutputCommitter: Saved output of task 'attempt_local_0001_r_000000_0' to hdfs://localhost:9000/user/hadoop/score_output
14/09/20 19:31:20 INFO mapred.JobClient: map 100% reduce 0%
14/09/20 19:31:22 INFO mapred.LocalJobRunner: reduce > reduce
14/09/20 19:31:22 INFO mapred.Task: Task 'attempt_local_0001_r_000000_0' done.
14/09/20 19:31:23 INFO mapred.JobClient: map 100% reduce 100%
14/09/20 19:31:23 INFO mapred.JobClient: Job complete: job_local_0001
14/09/20 19:31:23 INFO mapred.JobClient: Counters: 22
14/09/20 19:31:23 INFO mapred.JobClient: Map-Reduce Framework
14/09/20 19:31:23 INFO mapred.JobClient: Spilled Records=14
14/09/20 19:31:23 INFO mapred.JobClient: Map output materialized bytes=106
14/09/20 19:31:23 INFO mapred.JobClient: Reduce input records=7
14/09/20 19:31:23 INFO mapred.JobClient: Virtual memory (bytes) snapshot=0
14/09/20 19:31:23 INFO mapred.JobClient: Map input records=22
14/09/20 19:31:23 INFO mapred.JobClient: SPLIT_RAW_BYTES=116
14/09/20 19:31:23 INFO mapred.JobClient: Map output bytes=258
14/09/20 19:31:23 INFO mapred.JobClient: Reduce shuffle bytes=0
14/09/20 19:31:23 INFO mapred.JobClient: Physical memory (bytes) snapshot=0
14/09/20 19:31:23 INFO mapred.JobClient: Reduce input groups=7
14/09/20 19:31:23 INFO mapred.JobClient: Combine output records=7
14/09/20 19:31:23 INFO mapred.JobClient: Reduce output records=7
14/09/20 19:31:23 INFO mapred.JobClient: Map output records=21
14/09/20 19:31:23 INFO mapred.JobClient: Combine input records=21
14/09/20 19:31:23 INFO mapred.JobClient: CPU time spent (ms)=0
14/09/20 19:31:23 INFO mapred.JobClient: Total committed heap usage (bytes)=408944640
14/09/20 19:31:23 INFO mapred.JobClient: File Input Format Counters
14/09/20 19:31:23 INFO mapred.JobClient: Bytes Read=238
14/09/20 19:31:23 INFO mapred.JobClient: FileSystemCounters
14/09/20 19:31:23 INFO mapred.JobClient: HDFS_BYTES_READ=476
14/09/20 19:31:23 INFO mapred.JobClient: FILE_BYTES_WRITTEN=81132
14/09/20 19:31:23 INFO mapred.JobClient: FILE_BYTES_READ=448
14/09/20 19:31:23 INFO mapred.JobClient: HDFS_BYTES_WRITTEN=79
14/09/20 19:31:23 INFO mapred.JobClient: File Output Format Counters
14/09/20 19:31:23 INFO mapred.JobClient: Bytes Written=79
5、输出结果:
MapReduce编程系列 — 2:计算平均分的更多相关文章
- MapReduce编程系列 — 1:计算单词
1.代码: package com.mrdemo; import java.io.IOException; import java.util.StringTokenizer; import org.a ...
- 【原创】MapReduce编程系列之二元排序
普通排序实现 普通排序的实现利用了按姓名的排序,调用了默认的对key的HashPartition函数来实现数据的分组.partition操作之后写入磁盘时会对数据进行排序操作(对一个分区内的数据作排序 ...
- MapReduce编程系列 — 6:多表关联
1.项目名称: 2.程序代码: 版本一(详细版): package com.mtjoin; import java.io.IOException; import java.util.Iterator; ...
- MapReduce编程系列 — 5:单表关联
1.项目名称: 2.项目数据: chile parentTom LucyTom JackJone LucyJone JackLucy MaryLucy Ben ...
- MapReduce编程系列 — 4:排序
1.项目名称: 2.程序代码: package com.sort; import java.io.IOException; import org.apache.hadoop.conf.Configur ...
- MapReduce编程系列 — 3:数据去重
1.项目名称: 2.程序代码: package com.dedup; import java.io.IOException; import org.apache.hadoop.conf.Configu ...
- 【原创】MapReduce编程系列之表连接
问题描述 需要连接的表如下:其中左边是child,右边是parent,我们要做的是找出grandchild和grandparent的对应关系,为此需要进行表的连接. Tom Lucy Tom Jim ...
- MapReduce 编程 系列九 Reducer数目
本篇介绍怎样控制reduce的数目.前面观察结果文件,都会发现通常是以part-r-00000 形式出现多个文件,事实上这个reducer的数目有关系.reducer数目多,结果文件数目就多. 在初始 ...
- MapReduce 编程 系列七 MapReduce程序日志查看
首先,假设须要打印日志,不须要用log4j这些东西,直接用System.out.println就可以,这些输出到stdout的日志信息能够在jobtracker网站终于找到. 其次,假设在main函数 ...
随机推荐
- 浅谈Javascript闭包
垃圾回收器 我个人把闭包抽象的称之为”阻止垃圾回收器的函数”或者”有权访问另一个函数内部变量的函数"(当然这个是我个人的理解方式,每个人可能会有不同的理解方式),为什么这样说?这样说还得说说 ...
- Traveller项目介绍
Traveller,翻译为旅行家,是我用来实践最佳web技术的项目,主题是一个给旅行爱好者提供旅行信息的网站. 目标是组合现最流行的web技术,实现符合中国用户使用习惯的网站. 相关网址 Git:ht ...
- [转帖]译文:如何使用SocketAsyncEventArgs类(How to use the SocketAsyncEventArgs class)
原文链接:http://norke.blog.163.com/blog/static/276572082011828104315941/ 引言 我一直在探寻一个高性能的Socket客户端代码.以前,我 ...
- Scrapy简介
什么是Scrapy? Scrapy是一个快速.高级的爬行器和网页抓取框架,用来抓取网站和提取网页中结构化的数据.它被广泛的使用于监控数据采集和自动化测试. 参考:http://scrapy.org/
- NFS网络文件共享服务
NFS-网络文件系统,它的主要功能是通过网络让不同的主机系统之间可以彼此共享文件或目录. NFS在企业中得应用场景 在企业集群架构的工作场景中,NFS网络文件系统一般被用来存储共享视频.图片.附件等静 ...
- python 模拟ajax查询社工库...
在windows中使用,输入有关信息查询社工库,本来是网页版的,我把ajax请求提取出来.粗略的封装下,挺好玩. #coding:utf8 import urllib2,urllib from Bea ...
- 【WPF】Application应用程序启动
wpf应用程序在启动的时候会自动创建Main函数并调用Application实例的run(),从而启动Application进程.Main函数在一个App.g.cs文件中,App.g.cs文件的位置在 ...
- 编译andriod源码出错:java.lang.UnsupportedClassVersionError: com/google/doclava/Doclava : Unsupported
问题:java.lang.UnsupportedClassVersionError: com/google/doclava/Doclava : Unsupported update-java-alte ...
- HDFS(Hadoop Distributed File System )
HDFS(Hadoop Distributed File System ) HDFS(Hadoop Distributed File System )Hadoop分布式文件系统.是根据google发表 ...
- 在DataTable中执行DataTable.Select("条件")
.在DataTable中执行DataTable.Select("条件")返回DataTable: // <summary> // 执行DataTable中的查询返回 ...