KNN算法思想与实现
第二章 k近邻
2.1 算法描述
(1)采用测量不同特征值之间的距离进行分类
优点:对异常点不敏感,精度高,无数据输入设定
缺点:空间,计算复杂度高
适合数据:标称与数值
(2)算法的工作原理:
基于已有的带有标签的训练数据,计算出需要预测的数据与每个训练数据之间的距离,找到其中距离最近的k个数据,根据这k数据中数量最多的类来决定测试数据的类别
(3)算法的类别
该算法属于有监督学习,用于分类,因此它的目标变量是离散的
(4)算法的一般流程:
1.收集数据
2.准备数据
3.分析数据
4.测试算法
5.使用算法
2.2算法实现过程
(1)获取数据
(2)KNN算法
from numpy import *
import operator # this KNN matrix col is 3
# in order to create data
def createDataSet():
group = array([[1.0, 1.1], [1.0, 1.0], [0.0, 0.0], [0.0, 0.1]])
lables = ['A', 'A', 'B', 'B']
return group, lables # main algorithm
def classify0(inx, dataSet, lables, k):
datasetSize = dataSet.shape[0]
diffmat = tile(inx, (datasetSize, 1)) - dataSet
sqdiffmat = diffmat**2
sqDistance = sqdiffmat.sum(axis=1)
distance = sqDistance**0.5
sortedDistance = distance.argsort()
classcount = {}
for i in range(k):
votelabel = lables[sortedDistance[i]]
classcount[votelabel] = classcount.get(votelabel, 0) + 1
sortedclasscount = sorted(classcount.iteritems(), key=operator.itemgetter(1), reverse=True)
return sortedclasscount[0][0] # read the txt data file
def file2matrix(filename):
fr = open(filename)
arraylines = fr.readlines()
numberoflines = len(arraylines)
returnmatrix = zeros((numberoflines, 3)) # you can change the col
clasavector = []
index = 0
for line in arraylines:
line = line.strip()
listformline = line.split('\t')
returnmatrix[index, :] = listformline[0:3] # you should change the col
clasavector.append(int(listformline[-1]))
index += 1
return returnmatrix, clasavector # normalize the data
def autonorm(dataset):
minval = dataset.min(0)
maxval = dataset.max(0)
ranges = maxval - minval
datasetsize = dataset.shape[0]
normdataset = dataset - tile(minval, (datasetsize, 1))
normdataset = normdataset/tile(ranges, (datasetsize, 1))
return normdataset, ranges, minval def datingclasstest(filename):
horatio = 0.1
dataset, lableset = file2matrix(filename)
noramdataset, ranges, minval = autonorm(dataset)
col = dataset.shape[0]
test = int(col*horatio)
errorcount = 0.0
for i in range(col):
classlable = classify0(noramdataset[i, :], noramdataset[test:col, :], lableset[test:col], 3)
if classlable != lableset[i]:
errorcount += 1
error = errorcount / float(col)
print error
(3)dating应用程序
import KNN
from numpy import * def classifyperson():
returnlist = ['not at all', 'in small doses', 'in large doses']
game = float(raw_input("the percentage of playing video game"))
fly = float(raw_input("the num of the flier mail"))
icecream = float(raw_input("the num of icecream every weak"))
person = array([game, fly, icecream])
dataset,datalable = KNN.file2matrix("F:data/machinelearninginaction/Ch02/datingTestSet2.txt")
normdataset, ranges, minval=KNN.autonorm(dataset)
classifierresult =KNN.classify0((person - minval)/ranges, normdataset, datalable, 3)
print "you will like him %s" % returnlist[classifierresult-1]
(4)手写识别程序
import KNN
from os import listdir
from numpy import * # change the 32*32 to vector
def image2vertor(filename):
fr = open(filename)
imagevertor = zeros((1, 1024))
for i in range(32):
line = fr.readline()
for j in range(32):
imagevertor[0, i*32+j] = int(line[j])
return imagevertor
testvector = image2vertor("F:data/machinelearninginaction/Ch02/digits/testDigits/0_13.txt") def handwritingtest():
hwlables = [] # record the lable
filename = listdir("F:data/machinelearninginaction/Ch02/digits/trainingDigits/")
filenum = len(filename)
dataset = zeros((filenum, 1024))
for i in range(filenum):
filenamestr = filename[i].split(".")[0]
filelable = int(filenamestr.split('_')[0])
hwlables.append(filelable)
filepath = "F:data/machinelearninginaction/Ch02/digits/trainingDigits/" + filename[i]
data = image2vertor(filepath)
dataset[i, :] = data
testfile = listdir("F:data/machinelearninginaction/Ch02/digits/testDigits/")
testfilenum = len(testfile)
for j in range(testfilenum):
testfilestr = testfile[j].split('.')[0]
testfilelable =int(testfilestr.split('_')[0])
testdilepath = "F:data/machinelearninginaction/Ch02/digits/testDigits/" + testfile[j]
testdata = image2vertor(testdilepath)
classname = KNN.classify0(testdata, dataset, hwlables, 3)
error = 0.0
if classname == testfilelable:
error += 1
print "we think it is %d, the real is %d" % (classname, testfilelable)
print "the num of error is %d " % error
print "the error rate is %f" % (error/float(testfilenum)) handwritingtest()
KNN算法思想与实现的更多相关文章
- 机器学习之KNN算法思想及其实现
从一个例子来直观感受KNN思想 如下图 , 绿色圆要被决定赋予哪个类,是红色三角形还是蓝色四方形?如果K=3,由于红色三角形所占比例为2/3,绿色圆将被赋予红色三角形那个类,如果K=5,由于蓝色四方形 ...
- Python 手写数字识别-knn算法应用
在上一篇博文中,我们对KNN算法思想及流程有了初步的了解,KNN是采用测量不同特征值之间的距离方法进行分类,也就是说对于每个样本数据,需要和训练集中的所有数据进行欧氏距离计算.这里简述KNN算法的特点 ...
- 机器学习【三】k-近邻(kNN)算法
一.kNN算法概述 kNN算法是用来分类的,其依据测量不同特征值之间的距离,其核心思想在于用距离目标最近的k个样本数据的分类来代表目标的分类(这k个样本数据和目标数据最为相似).其精度高,对异常值不敏 ...
- KNN算法原理(python代码实现)
kNN(k-nearest neighbor algorithm)算法的核心思想是如果一个样本在特征空间中的k个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性 ...
- 【Machine Learning】KNN算法虹膜图片识别
K-近邻算法虹膜图片识别实战 作者:白宁超 2017年1月3日18:26:33 摘要:随着机器学习和深度学习的热潮,各种图书层出不穷.然而多数是基础理论知识介绍,缺乏实现的深入理解.本系列文章是作者结 ...
- 机器学习&数据挖掘笔记_16(常见面试之机器学习算法思想简单梳理)
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考 ...
- kNN算法python实现和简单数字识别
kNN算法 算法优缺点: 优点:精度高.对异常值不敏感.无输入数据假定 缺点:时间复杂度和空间复杂度都很高 适用数据范围:数值型和标称型 算法的思路: KNN算法(全称K最近邻算法),算法的思想很简单 ...
- 数据挖掘之KNN算法(C#实现)
在十大经典数据挖掘算法中,KNN算法算得上是最为简单的一种.该算法是一种惰性学习法(lazy learner),与决策树.朴素贝叶斯这些急切学习法(eager learner)有所区别.惰性学习法仅仅 ...
- KNN算法与Kd树
最近邻法和k-近邻法 下面图片中只有三种豆,有三个豆是未知的种类,如何判定他们的种类? 提供一种思路,即:未知的豆离哪种豆最近就认为未知豆和该豆是同一种类.由此,我们引出最近邻算法的定义:为了判定未知 ...
随机推荐
- EFI怎么装系统? UEFI BIOS
关于EFI的介绍,就不赘述了. 大家可以看看这个帖子 http://benyouhui.it168.com/thread-2488583-1-1.html 总之,新电脑都是这玩意,win8也做了相应E ...
- C++ Primer 有感(管理类的指针成员)
C++类的指针成员与其他成员有所不同,指针成员指向一个内存地址,该地址的内存需要我没管理. 我现在分析一下为什么要管理指针成员. 有如下Student类,Student.h如下: [cpp] view ...
- 海量数据挖掘MMDS week2: 频繁项集挖掘 Apriori算法的改进:基于hash的方法
http://blog.csdn.net/pipisorry/article/details/48901217 海量数据挖掘Mining Massive Datasets(MMDs) -Jure Le ...
- ios入门OC_UI晋级学什么?
1. OC 语法初步, 你可能学到面向对象最近本的概念, 并且可以大致的建立几个自以为是的类,但这仅仅是开始. 你知道为什么面向对象要有3大特性么.知道他们是用到什么设计模式的么 2. 你可能学到了N ...
- jpa一对多映射案例
订单和订单项就是一对多的关系.一个订单有多个订单项,一个订单项属于某个订单. 订单和订单项映射后的表结构如下: 订单表结构 订单项表结构 下面就以订单和订单项为例介绍多对多映射关系的实例开发 pers ...
- 学习OpenCV,GPU模块
如何使用opencv的gpu库呢?我这两天一直在搞这个事情,环境的配置见上文(转载),这里我先举个简单的例子,实现这样的功能:host读入一幅图像,加载到GPU上,在GPU上复制一份然后下传到host ...
- OAF中的TableLayout 高级表格
我们经常会遇到这种情况,我们要把显示界面分成几块区域来分别显示不同的内容.比如在同一行左边显示messageComponentLayout,右边显示table,这时,我们就要用到tableLayout ...
- 将 MVVM 演化为 MVVMM
众所周知,MVVM模式解决了Controller的臃肿并方便单元测试,为了方便后续代码维护,在上版本新功能开发中,项目开始使用MVVM模式进行开发. 但从上图可以看出,MVVM模式中,Controll ...
- objc:NSDateFormatter使用备忘
NSDateFormatter类的实例可以将字符串的日期表示转换为NSDate对象或者反向转换. 如果只要显示日期不需要时间,则可以用-setDateStyle方法来设置显示日期的格式,有以下几种: ...
- How tomcat works 读书笔记十七 启动tomcat 下
在上一节中,我们程序的起始位置还是Bootstrap,现在我们通过bat文件来启动这个类. 在分析catalina.bat之前,我们先看看几个简单的我们能用到的dos命令. 基础知识 1 rem 注释 ...