ROS机器人程序设计(原书第2版)补充资料 (陆) 第六章 点云 PCL

书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用。

RGBD深度摄像头传感器最常用的数据存储,处理和显示方式就是点云。

推荐查阅-PCL官网:http://www.pointclouds.org/

1. http://wiki.ros.org/pcl_ros 2. http://wiki.ros.org/pcl

补充阅读:

http://blog.csdn.net/zhangrelay/article/details/50053733

http://blog.csdn.net/zhangrelay/article/details/50240935

第163页:

简介点云。

第163-165页:

理解点云,包括类型,算法和接口等。

第166-190页:

学习在ROS使用PCL,包括创建点云,可视化,滤波,缩减采样,配准,匹配,分区,分割等。

第191页:

本章小结。

  

思考与巩固:

1 使用深度摄像头采集环境信息,并用点云显示,用本章提及的方法进行处理。

2 在ROSwiki上查阅点云相关功能包并完成编译使用。

附:

How to use a PCL tutorial in ROS

Create a ROS package

$ catkin_create_pkg my_pcl_tutorial pcl_conversions pcl_ros roscpp sensor_msgs 

Then, modify the package.xml to add

  <build_depend>libpcl-all-dev</build_depend>
<run_depend>libpcl-all</run_depend>

Create the code skeleton

Create an empty file called src/example.cpp and paste the following code in it:

切换行号显示
1 #include <ros/ros.h>
2 // PCL specific includes
3 #include <sensor_msgs/PointCloud2.h>
4 #include <pcl_conversions/pcl_conversions.h>
5 #include <pcl/point_cloud.h>
6 #include <pcl/point_types.h>
7
8 ros::Publisher pub;
9
10 void
11 cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
12 {
13 // Create a container for the data.
14 sensor_msgs::PointCloud2 output;
15
16 // Do data processing here...
17 output = *input;
18
19 // Publish the data.
20 pub.publish (output);
21 }
22
23 int
24 main (int argc, char** argv)
25 {
26 // Initialize ROS
27 ros::init (argc, argv, "my_pcl_tutorial");
28 ros::NodeHandle nh;
29
30 // Create a ROS subscriber for the input point cloud
31 ros::Subscriber sub = nh.subscribe ("input", 1, cloud_cb);
32
33 // Create a ROS publisher for the output point cloud
34 pub = nh.advertise<sensor_msgs::PointCloud2> ("output", 1);
35
36 // Spin
37 ros::spin ();
38 }

The code above does nothing but initialize ROS, create a subscriber and a publisher for PointCloud2 data.

Add the source file to CMakeLists.txt

Edit the CMakeLists.txt file in your newly created package and add:

add_executable(example src/example.cpp)
target_link_libraries(example ${catkin_LIBRARIES})

Download the source code from the PCL tutorial

PCL has about four different ways of representing point cloud data, so it can get a bit confusing, but we'll try to keep it simple for you. The types are:

  • sensor_msgs::PointCloud — ROS message (deprecated)

  • sensor_msgs::PointCloud2 — ROS message

  • pcl::PCLPointCloud2 — PCL data structure mostly for compatibility with ROS (I think)

  • pcl::PointCloud<T> — standard PCL data structure

In the following code examples we will focus on the ROS message (sensor_msgs::PointCloud2) and the standard PCL data structure (pcl::PointCloud<T>). However, you should also note that pcl::PCLPointCloud2 is an important and useful type as well: you can directly subscribe to nodes using that type and it will be automatically serialized to/from the sensor_msgs type. See this example to try PCLPointCloud2 yourself.

sensor_msgs/PointCloud2

If you'd like to save yourself some copying and pasting, you can download the source file for this example here. Just remember to rename the file to example.cpp or edit your CMakeLists.txt to match.

The sensor_msgs/PointCloud2 format was designed as a ROS message, and is the preferred choice for ROS applications. In the following example, we downsample a PointCloud2 structure using a 3D grid, thus reducing the number of points in the input dataset considerably.

To add this capability to the code skeleton above, perform the following steps:

  • visit http://www.pointclouds.org/documentation/, click on Tutorials, then navigate to the Downsampling a PointCloud using a VoxelGrid filter tutorial (http://www.pointclouds.org/documentation/tutorials/voxel_grid.php)

  • read the code and the explanations provided there. You will notice that the code breaks down essentially in 3 parts: 
    • load the cloud (lines 9-19)
    • process the cloud (lines 20-24)
    • save the output (lines 25-32)
  • since we use ROS subscribers and publishers in our code snippet above, we can ignore the loading and saving of point cloud data using the PCD format. Thus, the only relevant part in the tutorial remains lines 20-24 that create the PCL object, pass the input data, and perform the actual computation:
切换行号显示
1   // Create the filtering object
2 pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
3 sor.setInputCloud (cloud);
4 sor.setLeafSize (0.01, 0.01, 0.01);
5 sor.filter (*cloud_filtered);
  • In these lines, the input dataset is named cloud, and the output dataset is called cloud_filtered. We can copy this work, but remember from earlier that we said we wanted to work with the sensor_msgs class, not the pcl class. In order to do this, we're going to have to do a little bit of extra work to convert the ROS message to the PCL type. Modify the callback function as follows:

切换行号显示
1 #include <pcl/filters/voxel_grid.h>
2
3 ...
4
5 void
6 cloud_cb (const sensor_msgs::PointCloud2ConstPtr& cloud_msg)
7 {
8 // Container for original & filtered data
9 pcl::PCLPointCloud2* cloud = new pcl::PCLPointCloud2;
10 pcl::PCLPointCloud2ConstPtr cloudPtr(cloud);
11 pcl::PCLPointCloud2 cloud_filtered;
12
13 // Convert to PCL data type
14 pcl_conversions::toPCL(*cloud_msg, *cloud);
15
16 // Perform the actual filtering
17 pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
18 sor.setInputCloud (cloudPtr);
19 sor.setLeafSize (0.1, 0.1, 0.1);
20 sor.filter (cloud_filtered);
21
22 // Convert to ROS data type
23 sensor_msgs::PointCloud2 output;
24 pcl_conversions::fromPCL(cloud_filtered, output);
25
26 // Publish the data
27 pub.publish (output);
28 }

Note

Since different tutorials will often use different variable names for their inputs and outputs, remember that you may need to modify the code slightly when integrating the tutorial code into your own ROS node. In this case, notice that we had to change the variable name input to cloud, and output to cloud_filtered in order to match up with the code from the tutorial we copied.

Note that there is a slight inefficiency here. The fromPCL can be replaced with moveFromPCL to prevent copying the entire (filtered) point cloud. However, the toPCL call cannot be optimized in this way since the original input is const.

Save the output file then build:

$ cd %TOP_DIR_YOUR_CATKIN_HOME%
$ catkin_make

Then run:

$ rosrun my_pcl_tutorial example input:=/narrow_stereo_textured/points2

or, if you're running an OpenNI-compatible depth sensor, try:

$ roslaunch openni_launch openni.launch
$ rosrun my_pcl_tutorial example input:=/camera/depth/points

You can visualize the result by running RViz:

$ rosrun rviz rviz

and adding a "PointCloud2" display. Select camera_depth_frame for the Fixed Frame (or whatever frame is appropriate for your sensor) and select output for the PointCloud2 topic. You should see a highly downsampled point cloud. For comparison, you can view the /camera/depth/points topic and see how much it has been downsampled.

pcl/PointCloud<T>

As with the previous example, if you want to skip a few steps, you can download the source file for this example here.

The pcl/PointCloud<T> format represents the internal PCL point cloud format. For modularity and efficiency reasons, the format is templated on the point type, and PCL provides a list of templated common types which are SSE aligned. In the following example, we estimate the planar coefficients of the largest plane found in a scene.

To add this capability to the code skeleton above, perform the following steps:

  • visit http://www.pointclouds.org/documentation/, click on Tutorials, then navigate to the Planar model segmentation tutorial (http://www.pointclouds.org/documentation/tutorials/planar_segmentation.php)

  • read the code and the explanations provided there. You will notice that the code breaks down essentially in 3 parts: 
    • create a cloud and populate it with values (lines 12-30)
    • process the cloud (38-56)
    • write the coefficients (58-68)
  • since we use ROS subscribers in our code snippet above, we can ignore the first step, and just process the cloud received on the callback directly. Thus, the only relevant part in the tutorial remains lines 38-56 that create the PCL object, pass the input data, and perform the actual computation:
切换行号显示
1   pcl::ModelCoefficients coefficients;
2 pcl::PointIndices inliers;
3 // Create the segmentation object
4 pcl::SACSegmentation<pcl::PointXYZ> seg;
5 // Optional
6 seg.setOptimizeCoefficients (true);
7 // Mandatory
8 seg.setModelType (pcl::SACMODEL_PLANE);
9 seg.setMethodType (pcl::SAC_RANSAC);
10 seg.setDistanceThreshold (0.01);
11
12 seg.setInputCloud (cloud.makeShared ());
13 seg.segment (inliers, coefficients);
  • In these lines, the input dataset is named cloud and is of type pcl::PointCloud<pcl::PointXYZ>, and the output is represented by a set of point indices that contain the plane together with the plane coefficients. cloud.makeShared()creates a boost shared_ptr object for the object cloud (see the pcl::PointCloud API documentation).

Copy these lines, in the code snippet above, by modifying the callback function as follows:

切换行号显示
1 #include <pcl/sample_consensus/model_types.h>
2 #include <pcl/sample_consensus/method_types.h>
3 #include <pcl/segmentation/sac_segmentation.h>
4
5 ...
6
7 void
8 cloud_cb (const sensor_msgs::PointCloud2ConstPtr& input)
9 {
10 // Convert the sensor_msgs/PointCloud2 data to pcl/PointCloud
11 pcl::PointCloud<pcl::PointXYZ> cloud;
12 pcl::fromROSMsg (*input, cloud);
13
14 pcl::ModelCoefficients coefficients;
15 pcl::PointIndices inliers;
16 // Create the segmentation object
17 pcl::SACSegmentation<pcl::PointXYZ> seg;
18 // Optional
19 seg.setOptimizeCoefficients (true);
20 // Mandatory
21 seg.setModelType (pcl::SACMODEL_PLANE);
22 seg.setMethodType (pcl::SAC_RANSAC);
23 seg.setDistanceThreshold (0.01);
24
25 seg.setInputCloud (cloud.makeShared ());
26 seg.segment (inliers, coefficients);
27
28 // Publish the model coefficients
29 pcl_msgs::ModelCoefficients ros_coefficients;
30 pcl_conversions::fromPCL(coefficients, ros_coefficients);
31 pub.publish (ros_coefficients);
32 }

Notice that we added two conversion steps: from sensor_msgs/PointCloud2 to pcl/PointCloud<T>and from pcl::ModelCoefficients to pcl_msgs::ModelCoefficients. We also changed the variable that we publish from output to coefficients.

In addition, since we're now publishing the planar model coefficients found rather than point cloud data, we have to change our publisher type from:

  // Create a ROS publisher for the output point cloud
pub = nh.advertise<sensor_msgs::PointCloud2> ("output", 1);

to:

  // Create a ROS publisher for the output model coefficients
pub = nh.advertise<pcl_msgs::ModelCoefficients> ("output", 1);

Save the output file, then compile and run the code above:

$ rosrun my_pcl_tutorial example input:=/narrow_stereo_textured/points2

or, if you're running an OpenNI-compatible depth sensor, try:

$ rosrun my_pcl_tutorial example input:=/camera/depth/points

See the output with

$ rostopic echo output
-End-

ROS机器人程序设计(原书第2版)补充资料 (陆) 第六章 点云 PCL的更多相关文章

  1. ROS机器人程序设计(原书第2版)补充资料 教学大纲

    ROS机器人程序设计(原书第2版) 补充资料 教学大纲 针对该书稍后会补充教学大纲.教案.多媒体课件以及练习题等. <ROS机器人程序设计>课程简介 课程编号:XXXXXX 课程名称:RO ...

  2. ROS机器人程序设计(原书第2版)补充资料 (拾) 第十章 使用MoveIt!

    ROS机器人程序设计(原书第2版)补充资料 (拾) 第十章 使用MoveIt! 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. MoveIt ...

  3. ROS机器人程序设计(原书第2版)补充资料 (玖) 第九章 导航功能包集进阶 navigation

    ROS机器人程序设计(原书第2版)补充资料 (玖) 第九章 导航功能包集进阶 navigation 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中 ...

  4. ROS机器人程序设计(原书第2版)补充资料 (零) 源代码、资料和印刷错误修订等 2017年01月01日更新

    ROS机器人程序设计(原书第2版)补充资料 (零) 源代码等 ROS官网 版)部分内容修订 页:第1行,删去$ 页:第6行,float64 y 前面加一个空格 页:中间创建主题:下面程序不用换行,(& ...

  5. ROS机器人程序设计(原书第2版)学习镜像分享及使用说明

    ROS机器人程序设计(原书第2版)学习镜像分享及使用说明 系统用于ROS爱好者学习交流,也可用于其他用途,并不局限于ROS. 这款镜像文件是基于一年前的Ubuntu ROS Arduino Gazeb ...

  6. ROS机器人程序设计(原书第2版)补充资料 (捌) 第八章 导航功能包集入门 navigation

    ROS机器人程序设计(原书第2版)补充资料 (捌) 第八章 导航功能包集入门 navigation 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中 ...

  7. ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse

    ROS机器人程序设计(原书第2版)补充资料 (柒) 第七章 3D建模与仿真 urdf Gazebo V-Rep Webots Morse 书中,大部分出现hydro的地方,直接替换为indigo或ja ...

  8. ROS机器人程序设计(原书第2版)补充资料 (伍) 第五章 计算机视觉

    ROS机器人程序设计(原书第2版)补充资料 (伍) 第五章 计算机视觉 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. 计算机视觉这章分为两 ...

  9. ROS机器人程序设计(原书第2版)补充资料 (肆) 第四章 在ROS下使用传感器和执行器

    ROS机器人程序设计(原书第2版)补充资料 (肆) 第四章 在ROS使用传感器和执行器 书中,大部分出现hydro的地方,直接替换为indigo或jade或kinetic,即可在对应版本中使用. 第四 ...

随机推荐

  1. Myeclipse修改设置Default VM Arguments

    打开Windows-> Preferences 然后选择右侧菜单的Java->Installed JREs 点击右侧的jdk,然后点击"Edit"按钮 Default ...

  2. .Net Core 学习之路-AutoFac的使用

    本文不介绍IoC和DI的概念,如果你对Ioc之前没有了解的话,建议先去搜索一下相关的资料 这篇文章将简单介绍一下AutoFac的基本使用以及在asp .net core中的应用 Autofac介绍 组 ...

  3. vue-cli的使用

    1.安装node https://nodejs.org/en/download/ 2.webpack安装[我选全局安装] 全局安装 npm install --global webpack 本地安装 ...

  4. Hive优化案例

    1.Hadoop计算框架的特点 数据量大不是问题,数据倾斜是个问题. jobs数比较多的作业效率相对比较低,比如即使有几百万的表,如果多次关联多次汇总,产生十几个jobs,耗时很长.原因是map re ...

  5. redis安装异常的解决的办法

    在开始redis安装的时候,先废话一下 官网: 英文 :https://redis.io/ 中文 :http://www.redis.cn/ 首先我们需要一个linux服务器,当然windows也是可 ...

  6. 将 Net 项目升级 Core项目经验:(二)修复迁移后Net Standard项目中的错误

    修复迁移后Net Standard项目中的错误 接上一章,项目编译结果如下: 解决依赖dll引用 在Net Framework项目的引用如下: 各引用和作用: log4net(1.10.0.0) 用于 ...

  7. 关于sg90舵机的,要知道!要注意!

    这类舵机的转向跟频率和占空比相关,两者缺一不可! 1.在一个特定的频率下,特定的占空比使得舵机会转到一个角度,占空比不变,则角度不会不会变化,所以想要舵机动,就要在国定的频率下不断改变占空比. 2.当 ...

  8. [HNOI 2003]激光炸弹

    Description 一种新型的激光炸弹,可以摧毁一个边长为R的正方形内的所有的目标.现在地图上有n个目标,用整数,表示目标在地图上的位置,每个目标都有一个价值.激光炸弹的投放是通过卫星定位的,但其 ...

  9. 【BZOJ3224】【tyvj1728】普通平衡树

    最近开始学习平衡树,在学长的强烈推荐下学习了AVL.红黑树.splay(以上我都还没学)treap. 首先讲一下个人对treap(树堆)的理解. treap,顾名思义,就是tree+heap,首先因为 ...

  10. ●BZOJ 3926 [Zjoi2015]诸神眷顾的幻想乡

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=3926题解&&代码: 后缀自动机,Trie树 如果以每个叶子为根,所有的子串一 ...