HDU4899 Hero meet devil DP套DP
陈老师的题QwQ
原题链接
题目大意
有两个字符串\(S\)和\(T\)(都只能由'A','C','G','T'这四个字符组成),\(S\)已知\(T\)未知,还知道\(S\)的长度为\(m\)。求满足\(Len(LCS(S,T))=L,1\leqslant L\leqslant |T|\)的\(S\)的个数
先想想若\(S\)已知怎么做。一个简单的\(DP\)就能解决,设\(dp[i][j]\)表示\(S\)到\(i\)位置,\(T\)到\(j\)位置时\(LCS\)的长度:
1.若\(S[i]==T[j]\),则\(dp[i][j]=max(dp[i-1][j-1]+1,max(dp[i-1][j],dp[i][j-1]))\)
2.否则\(dp[i][j]=max(dp[i-1][j],dp[i][j-1])\)
然后考虑倒过来怎么做,看一下数据范围,可能状压?设\(f[i][state]\)表示\(T\)填到第\(i\)位,\(dp[?][i]\)在\(Len(S)+1\)进制下的表示时的方案数,再令\(g[state][c]\)表示状态是\(state\)时再加一个字符\(c\)后的\(state\)是多少。\(g\)数组可以预处理一下,然后\(f\)就好转移了:
\(f[i][g[state][c]]=f[i][g[state][c]]+f[i-1][state]\)
这样的话空间显然会炸,一个显然的性质,\(dp[i][j]\)只有可能是\(dp[i-1][j]\)或\(dp[i-1][j]+1\),我们把差分数组在二进制下压一下就行了
预处理时间复杂度\(O(4*n*2^{Len(S)})\),转移的时间复杂度为\(O(4*m*2^{Len(S)})\),空间复杂度\(\theta (m*2^{Len(S)}+4*2^{Len(S)})\)
代码(预处理参考了自为风月马前卒大佬的博客):
#include <bits/stdc++.h>
#define MOD 1000000007
using namespace std;
int kase;
string S;
char ch[4] = {'A', 'C', 'G', 'T'};
int n, m, tmp[2][20], lim, f[1001][32800], g[32800][4], ans[20];
int lowbit(int x) {
return x&-x;
}
int popcount(int x) {
int cnt = 0;
while(x) cnt++, x -= lowbit(x);
return cnt;
}
int calc(int state, char c) {
for(int i = 1; i <= n; ++i) tmp[0][i] = tmp[0][i-1]+((state>>i-1)&1);
int ret = 0;
for(int i = 1; i <= n; ++i)
{
int t = 0;
if(c == S[i-1]) t = tmp[0][i-1]+1;
t = max(t, max(tmp[1][i-1], tmp[0][i]));
tmp[1][i] = t;
}
for(int i = 1; i <= n; ++i) ret += (1<<i-1)*(tmp[1][i]-tmp[1][i-1]);
return ret;
}
int main() {
cin >> kase;
for(int i = 1; i <= kase; ++i) {
cin >> S >> m;
n = S.length();
lim = (1<<n)-1;
memset(f, 0, sizeof f), memset(ans, 0, sizeof ans);
f[0][0] = 1;
for(int i = 0; i <= lim; ++i)
for(int j = 0; j < 4; ++j) g[i][j] = calc(i, ch[j]);
for(int i = 1; i <= m; ++i)
for(int j = 0; j <= lim; ++j)
for(int k = 0; k < 4; ++k)
f[i][g[j][k]] = (f[i][g[j][k]]+f[i-1][j])%MOD;
for(int i = 0; i <= lim; ++i) ans[popcount(i)] = (ans[popcount(i)]+f[m][i])%MOD;
for(int i = 0; i <= n; ++i) cout << ans[i] << endl;
}
return 0;
}
HDU4899 Hero meet devil DP套DP的更多相关文章
- hdu4899 Hero meet devil
题目链接 题意 给出一个长度字符串\(T\),其中只包含四种字符\((A,C,G,T)\),需要找一个字符串\(S\),使得\(S\)的长度为\(m\),问\(S\)和\(T\)的\(lcs\)为\( ...
- HDU 4899 Hero meet devil (状压DP, DP预处理)
题意:给你一个基因序列s(只有A,T,C,G四个字符,假设长度为n),问长度为m的基因序列s1中与给定的基因序列LCS是0,1......n的有多少个? 思路:最直接的方法是暴力枚举长度为m的串,然后 ...
- BZOJ 3864 Hero meet devil (状压DP)
最近写状压写的有点多,什么LIS,LCSLIS,LCSLIS,LCS全都用状压写了-这道题就是一道状压LCSLCSLCS 题意 给出一个长度为n(n<=15)n(n<=15)n(n< ...
- bzoj 3864: Hero meet devil [dp套dp]
3864: Hero meet devil 题意: 给你一个只由AGCT组成的字符串S (|S| ≤ 15),对于每个0 ≤ .. ≤ |S|,问 有多少个只由AGCT组成的长度为m(1 ≤ m ≤ ...
- 【BZOJ3864】Hero meet devil DP套DP
[BZOJ3864]Hero meet devil Description There is an old country and the king fell in love with a devil ...
- DP套DP
DP套DP,就是将内层DP的结果作为外层DP的状态进行DP的方法. [BZOJ3864]Hero meet devil 对做LCS的DP数组差分后状压,预处理出转移数组,然后直接转移即可. tr[S] ...
- [模板] dp套dp && bzoj5336: [TJOI2018]party
Description Problem 5336. -- [TJOI2018]party Solution 神奇的dp套dp... 考虑lcs的转移方程: \[ lcs[i][j]=\begin{ca ...
- BZOJ 3864 Hero meet devil 超详细超好懂题解
题目链接 BZOJ 3864 题意简述 设字符集为ATCG,给出一个长为\(n(n \le 15)\)的字符串\(A\),问有多少长度为\(m(m \le 1000)\)的字符串\(B\)与\(A\) ...
- luogu 4158 粉刷匠 dp套dp
dp套dp 每个木板是个递推的dp,外部是个分组背包 #include<bits/stdc++.h> #define rep(i,x,y) for(register int i=x;i&l ...
随机推荐
- Ajax的面试题
一.什么事Ajax?为什么要用Ajax?(谈谈对Ajax的认识) 什么是Ajax: Ajax是“Asynchronous JavaScript and XML”的缩写.他是指一种创建交互式网页应用的网 ...
- MySQL中SELECT语句简单使用
最近开始复习mysql,查漏补缺吧. 关于mysql 1.MySQL不区分大小写,但是在MySQL 4.1及之前的版本中,数据库名.表名.列名这些标识符默认是区分大小写的:在之后的版本中默认不区分大小 ...
- 持续集成之 Spring Boot 实战篇
本文作者: CODING 用户 - 何健 这次实战篇,我们借助「CODING 持续集成」,实现一个简单的 Spring Boot 项目从编码到最后部署的完整过程.本教程还有 B 站视频版,帮助读者更好 ...
- java 线程池 ---- newCachedThreadPool()
class MyThread implements Runnable{ private int index; public MyThread(int index){ this.index = inde ...
- Fixed-Point Designer(设计、仿真和分析定点系统)
Fixed-Point Designer™ 提供开发定点和单精度算法所需的数据类型和工具,以在嵌入式硬件上进行性能优化.Fixed-Point Designer 会分析您的设计并提供建议的数据类型和属 ...
- Jenkins分布式部署配置
为什要使用Jenkins分布式? 利用jenkins分布式来构建job,当job量足够大的时候,可以有效的缓解jenkins-master上的压力,提高并行job数量, 减少job处于pending状 ...
- Video clip 视频剪辑:入门级
作为一个对小说漫画电视剧电影的设计有着自己独特需求的人,一直对视频剪辑有着浓厚的兴趣,之前用爱剪辑这种通俗易上手的软件做过简单的小视频.但是这个毕竟满足不了我自己的需求而且属于完全门外汉级别.这次终于 ...
- 用jenkins创建节点
原料:(1)jre下载链接:https://www.oracle.com/technetwork/java/javase/downloads/jre8-downloads-2133155.html ( ...
- windows server 2008 R2 Enterprise 间实时同步之FreeFileSync 部署过程
WindowsServer间实时同步之FreeFileSync 部署过程 1. 实验主机信息 IP 操作系统 源目录 目标目录 10.155.0.80 Windows Server 2008 R2 D ...
- JVM内存结构简单认知
关于JVM的面试传送门:https://blog.csdn.net/shengmingqijiquan/article/details/77508471 JVM内存结构主要划分为:堆,jvm栈,本地方 ...