Equipment UVA - 1508(子集补集)
The Korea Defense and Science Institute, shortly KDSI, has been putting constant effort into new
equipment for individual soldiers for recent years, and at last released N new types of equipment.
KDSI has already done evaluation of each of the N types of equipment, finally resulting in scores in five
categories: attack improvement, defense improvement, vision improvement, portability, and easiness of
usage. The score in each category is quantified as an integer in the range 0 to 10,000, and the rating
of each type of equipment is thus represented as a sequence of five integers.
In consideration of costs and capability of average individual soldiers, KDSI also reported that each
soldier will be able to install at most K types of equipment on his body to extend his ability. If a single
type is installed on a soldier, then his ability in each category is extended by the specified score of that
type. Moreover, if a soldier installs more than one type of equipment, then his ability in each category
is extended by the maximum score of the chosen types in that category. For example, if the vision
improvement scores of type a and type b are 10 and 15, respectively, then installing a combination
of two types a and b will result in a vision improvement by their maximum score 15. We call the
maximum score 15 the extension score of a category; so, the extension score of vision improvement for
combination {a, b} is 15 in this example.
KDSI now started devising a way of finding an optimal combination of K types of equipment for best
performance of individual soldiers. While a force can sometimes be of a special purpose so that a certain
category would be more important than the others, every single category is, however, regarded equally
important in general. For this general purpose, KDSI defined the objective score of a combination of
equipment to be the sum of the extension scores of the five categories for the combination. KDSI thus
wants to find a best combination of K types of equipment such that its objective score is maximized
among all possible combinations of K types. You are asked by KDSI to devise and write a computer
program that finds the objective score of a best combination of K types of equipment, that is, the
maximum possible objective score for all possible combinations of K types among the given N types of
equipment.
Put differently, you are given N types of equipment {1, . . . , N} and their ratings Ri represented by
five integers Ri = (ri,1, ri,2, ri,3, ri,4, ri,5) with 0 ≤ ri,j ≤ 10, 000 for each i = 1, . . . , N and j = 1, . . . , 5.
Given another natural number K (1 ≤ K ≤ N), your program has to compute the objective score of a
best combination of K types of equipment.
For example, consider an input instance in which N = 4, K = 2, and each Ri
is given as below:
R1 = (30, 30, 30, 30, 0)
R2 = (50, 0, 0, 0, 0)
R3 = (0, 50, 0, 50, 10)
R4 = (0, 0, 50, 0, 20).
Then, choosing R1 and R3 forms a best combination of two types {1, 3} and yields the objective
score 30 + 50 + 30 + 50 + 10 = 170, which will be the answer of a correct program.
Input
Your program is to read from standard input. The input consists of T test cases. The number T of
test cases is given in the first line of the input. From the second line, each test case is given in order,
consisting of the following: a test case contains two integers N (1 ≤ N ≤ 10, 000) and K (1 ≤ K ≤ N)
in its first line, and is followed by N lines each of which consists of five integers inclusively between
0 and 10,000, representing the five scores ri,1, ri,2, ri,3, ri,4, and ri,5 of each type i of equipment for
i = 1, . . . , N in order. Two consecutive integers in one line are separated by a single space and there is
no empty line between two consecutive test cases.
Output
Your program is to write to standard output. Print exactly one line for each test case. The line should
contain a single integer that is the objective score of a best combination of K types of equipment; the
maximum possible objective score for all possible combinations of K types among the given N types
of equipment for the corresponding test case.
The following shows sample input and output for two test cases.
Sample Input
2
4 2
30 30 30 30 0
50 0 0 0 0
0 50 0 50 10
0 0 50 0 20
5 1
10 20 60 0 0
0 0 20 50 30
30 50 20 20 0
10 10 10 20 30
30 0 20 10 20
Sample Output
170
120
给出 n 组数据,每组数据是一个五元组,问当你从这 n 组数据中取出 m 组时,可以获得的最大价值是多少。
根据题意,当 m>=5 时,可以取上每一列的最大值,这样获得的价值是最大的。
当m < 5 时,如果对 n 去dfs,虽然m只有4,但是复杂度还是太高了....没莽过去...
那么考虑对五元组,对于一个五元组一共只有 31 种取法,打表出这 31 种取法可以取得的最大值。(mx[i]是 i 状态下只取一组数据的最大值)
接下来对于全集31,开始 dfs。(1表示还可以取,0表示已经取了)
对于每次开始 dfs 的状态 u,枚举他的子集 i,以及对补集 i^u 进行下一步的dfs。
这时候还有一种情况,两步 dfs 取的子集,事实上都是由同一组数据来的,那么这种应该要排除。
但是其实这种情况一定不可能是最优解,因为这两个不同子集都是由同一个数据来的,那么这两个子集的并集的最优解,一定也是从这组数据来的,所以只需要通过一步来完成,那么通过上面那种方法,必然会浪费一步,从而使最后的答案变小,所以一定会被排除。
/*
.
';;;;;.
'!;;;;;;!;`
'!;|&#@|;;;;!:
`;;!&####@|;;;;!:
.;;;!&@$$%|!;;;;;;!'.`:::::'.
'!;;;;;;;;!$@###&|;;|%!;!$|;;;;|&&;.
:!;;;;!$@&%|;;;;;;;;;|!::!!:::;!$%;!$%` '!%&#########@$!:.
;!;;!!;;;;;|$$&@##$;;;::'''''::;;;;|&|%@$|;;;;;;;;;;;;;;;;!$;
;|;;;;;;;;;;;;;;;;;;!%@#####&!:::;!;;;;;;;;;;!&####@%!;;;;$%`
`!!;;;;;;;;;;!|%%|!!;::;;|@##%|$|;;;;;;;;;;;;!|%$#####%;;;%&;
:@###&!:;;!!||%%%%%|!;;;;;||;;;;||!$&&@@%;;;;;;;|$$##$;;;%@|
;|::;;;;;;;;;;;;|&&$|;;!$@&$!;;;;!;;;;;;;;;;;;;;;;!%|;;;%@%.
`!!;;;;;;;!!!!;;;;;$@@@&&&&&@$!;!%|;;;;!||!;;;;;!|%%%!;;%@|.
%&&$!;;;;;!;;;;;;;;;;;|$&&&&&&&&&@@%!%%;!||!;;;;;;;;;;;;;$##!
!%;;;;;;!%!:;;;;;;;;;;!$&&&&&&&&&&@##&%|||;;;!!||!;;;;;;;$&:
':|@###%;:;;;;;;;;;;;;!%$&&&&&&@@$!;;;;;;;!!!;;;;;%&!;;|&%.
!@|;;;;;;;;;;;;;;;;;;|%|$&&$%&&|;;;;;;;;;;;;!;;;;;!&@@&'
.:%#&!;;;;;;;;;;;;;;!%|$$%%&@%;;;;;;;;;;;;;;;;;;;!&@:
.%$;;;;;;;;;;;;;;;;;;|$$$$@&|;;;;;;;;;;;;;;;;;;;;%@%.
!&!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;|@#;
`%$!;;;;;;;;;;;$@|;;;;;;;;;;;;;;;;;;;;;;;;!%$@#@|.
.|@%!;;;;;;;;;!$&%||;;;;;;;;;;;;;;;;;!%$$$$$@#|.
;&$!;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;%#####|.
|##$|!;;;;;;::'':;;;;;;;;;;;;;!%$$$@#@;
;@&|;;;;;;;::'''''':;;;;;;;|$&@###@|`
.%##@|;;;;:::''''''''''::;!%&##$'
`$##@$$@@&|!!;;;:'''''::::;;;;;|&#%.
;&@##&$%!;;;;;;::''''''''::;!|%$@#@&@@:
.%@&$$|;;;;;;;;;;:'''':''''::;;;%@#@@#%.
:@##@###@$$$$$|;;:'''':;;!!;;;;;;!$#@@#$;`
`%@$$|;;;;;;;;:'''''''::;;;;|%$$|!!&###&'
|##&%!;;;;;::''''''''''''::;;;;;;;!$@&:`!'
:;!@$|;;;;;;;::''''''''''':;;;;;;;;!%&@$: !@#$'
|##@@&%;;;;;::''''''''':;;;;;;;!%&@#@$%: '%%!%&;
|&%!;;;;;;;%$!:''''''':|%!;;;;;;;;|&@%||` '%$|!%&;
|@%!;;!!;;;||;:'''''':;%$!;;;;!%%%&#&%$&: .|%;:!&%`
!@&%;;;;;;;||;;;:''::;;%$!;;;;;;;|&@%;!$; `%&%!!$&:
'$$|;!!!!;;||;;;;;;;;;;%%;;;;;;;|@@|!$##; !$!;:!$&:
|#&|;;;;;;!||;;;;;;;;!%|;;;;!$##$;;;;|%' `%$|%%;|&$'
|&%!;;;;;;|%;;;;;;;;$$;;;;;;|&&|!|%&&; .:%&$!;;;:!$@!
`%#&%!!;;;;||;;;;;!$&|;;;!%%%@&!;;;!!;;;|%!;;%@$!%@!
!&!;;;;;;;;;||;;%&!;;;;;;;;;%@&!;;!&$;;;|&%;;;%@%`
'%|;;;;;;;;!!|$|%&%;;;;;;;;;;|&#&|!!||!!|%$@@|'
.!%%&%'`|$; :|$#%|@#&;%#%.
*/
#include <map>
#include <set>
#include <list>
#include <ctime>
#include <cmath>
#include <stack>
#include <queue>
#include <string>
#include <vector>
#include <cstdio>
#include <bitset>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define lowbit(x) x & (-x)
#define mes(a, b) memset(a, b, sizeof a)
#define fi first
#define se second
#define pii pair<int, int>
#define INOPEN freopen("in.txt", "r", stdin)
#define OUTOPEN freopen("out.txt", "w", stdout) typedef unsigned long long int ull;
typedef long long int ll;
const int maxn = 1e4 + ;
const int maxm = 1e5 + ;
const ll mod = 1e9 + ;
const ll INF = 1e18 + ;
const int inf = 0x3f3f3f3f;
const double pi = acos(-1.0);
const double eps = 1e-;
using namespace std; int n, m;
int cas, tol, T; struct Node{
int a[];
} node[maxn];
int mx[];
int ans; void dfs(int u, int cnt, int sum) {
if(cnt == m) {
ans = max(ans, sum);
return ;
}
for(int i=u; i; i=(i-)&u) {
dfs(i^u, cnt+, sum + mx[i]);
}
} int main() {
scanf("%d", &T);
while(T--) {
mes(mx, );
mes(node, );
scanf("%d%d", &n, &m);
for(int i=; i<=n; i++) {
for(int j=; j<=; j++) {
scanf("%d", &node[i].a[j]);
}
}
if(m >= ) {
int r1, r2, r3, r4, r5;
r1 = r2 = r3 = r4 = r5 = ;
for(int i=; i<=n; i++) {
for(int j=; j<=; j++) {
r1 = max(r1, node[i].a[]);
r2 = max(r2, node[i].a[]);
r3 = max(r3, node[i].a[]);
r4 = max(r4, node[i].a[]);
r5 = max(r5, node[i].a[]);
}
}
printf("%d\n", r1+r2+r3+r4+r5);
continue;
} else {
for(int i=; i<=n; i++) {
for(int u=; u<=; u++) {
int sum = ;
for(int j=; j<=; j++) {
if(u & (<<(j-))) {
sum += node[i].a[j];
}
}
mx[u] = max(mx[u], sum);
}
}
ans = ;
dfs(, , );
printf("%d\n", ans);
}
}
return ;
}
Equipment UVA - 1508(子集补集)的更多相关文章
- UVA 1508 - Equipment 状态压缩 枚举子集 dfs
UVA 1508 - Equipment 状态压缩 枚举子集 dfs ACM 题目地址:option=com_onlinejudge&Itemid=8&category=457& ...
- UVA 1508 - Equipment dp状态压缩
题意: 已知n个5元组,从中选出k组,使得这些组中5个位置,每个位置上最大数之和最大. 分析:当k>5时,就是n个5元组最大的数之和,当k<5时,就当做5元组,状态压缩,用00000表示 ...
- BZOJ 2560: 串珠子 (状压DP+枚举子集补集+容斥)
(Noip提高组及以下),有意者请联系Lydsy2012@163.com,仅限教师及家长用户. 2560: 串珠子 Time Limit: 10 Sec Memory Limit: 128 MB Su ...
- Inside Microsoft SQL Server 2008: T-SQL Querying 读书笔记1
(5)SELECT (5-2) DISTINCT (5-3)TOP(<top_specifications>) (5-1)<select_list> (1)FRO ...
- UVa 11825 - Hackers' Crackdown DP, 枚举子集substa = (substa - 1)&sta 难度: 2
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- uva 11825 Hackers' Crackdown (状压dp,子集枚举)
题目链接:uva 11825 题意: 你是一个黑客,侵入了n台计算机(每台计算机有同样的n种服务),对每台计算机,你能够选择终止一项服务,则他与其相邻的这项服务都终止.你的目标是让很多其它的服务瘫痪( ...
- UVA 11825 - Hackers' Crackdown 状态压缩 dp 枚举子集
UVA 11825 - Hackers' Crackdown 状态压缩 dp 枚举子集 ACM 题目地址:option=com_onlinejudge&Itemid=8&page=sh ...
- UVA 11825 Hackers’ Crackdown(集合动态规划 子集枚举)
Hackers’ Crackdown Miracle Corporations has a number of system services running in a distributed com ...
- uva 11825 巧妙地子集枚举方法
https://vjudge.net/problem/UVA-11825 题目大意,有n台服务器,有n种服务,每台服务器都运行着所有的服务,一台服务器可以被攻击一次其中的一种服务,当你选择攻击某台服务 ...
随机推荐
- docker daemon 配置文件
Ubuntu Ubuntu 14.04 配置文件位于 /etc/init/docker.conf Ubuntu 15.04 配置文件位于 /etc/default/docker,修改配置项DOCKER ...
- alias,data,系统定时开关机的基本操作
1.修改命令提示符的格式,及每个字母所代表的功能,显示提示符格式输入echo $PS1PS1="[\u@\h \W]\$"\e 或\033启用颜色 \u当前用户 \h主机名简称 \ ...
- Snowflake(雪花算法)的JavaScript实现
现在好多的ID都是服务器端生成的,当然JS也可以生成GUID或者UUID之类的,但是如果想要有序……这时就想到了雪花算法,但是都知道JS中Number的最大值为Number.MAX_SAFE_INTE ...
- DataPipeline | 享物说产品负责人夏凯:数据驱动的用户增长实战
夏凯 卡内基梅隆大学计算机系毕业,曾供职于Evernote数据团队和微软Bing.com搜索引擎广告部门.回国后作为早期成员加入小红书,先后从事大数据,用户增长,项目和团队管理等工作. 我最初是在美国 ...
- Linux下载_Linux系统各种版本ISO镜像下载(redhat,centos,oracle,ubuntu,openSUSE)
以下是风哥收集的Linux系统各种版本ISO镜像下载,包括redhat,centos,oracle,ubuntu等linux操作系统. Linux下载1:红帽RedHat Linux(RHEL5.RH ...
- sql 排序函数ROW_NUMBER分页返回数据
分页从数据库返回一张表的某些条数据 假设我需要查询 系统表 sys.all_columns中的数据,每次查询10条 第一次查询第1-10条数据 第二次查询第11-20条数据 第三次查询第21-30条数 ...
- hadoop wordcout测试
hadoop wordcout测试 安装好hadoop 环境后,启动HDFS等服务:输密码 1004 start-all.sh 查看启动情况 1006 jps 1007 cd ~ 切换到用户默认目录 ...
- ZHS16GBK的数据库导入到字符集为AL32UTF8的数据库
字符集为ZHS16GBK的数据库导入到字符集为AL32UTF8的数据库 相信大家都对字符集有相当的了解了,废话就不多说了!直接步入正题:这里主要是测试含有 汉字的数据从ZHS16GBK的数据库导入到 ...
- 多种解法解决n皇后问题
多种解法解决n皇后问题 0x1 目的 深入掌握栈应用的算法和设计 0x2 内容 编写一个程序exp3-8.cpp求解n皇后问题. 0x3 问题描述 即在n×n的方格棋盘上,放置n个皇后,要求每 ...
- 四。Hibernate 使用MAVEN工具
maven工具的使用1.作用:打包项目以及jar包的版本管理2.使用步骤: a.下载maven工具,修改conf目录下的setting.xml文件 <mirror> <id>a ...