题目描述

有一个长为\(n\),高为1001的网格,每个格子有\(p\)的概率为1,\((1-p)\)的概率0,定义一个网格的价值为极大的全一矩形,且这个矩形的底要贴着网格的底,求这个网格的价值为\(K\)的概率。

题解

我们可以考虑设一个\(dp\)。

我们定义每一列的高度为这一列最高的位置满足这个位置及以下的位置都为1。

设\(dp[i][j]\)表示已经做到了前\(i\)列,此时最低的位置为\(j\)并且此时的最大价值不超过\(K\)的概率。

可以看出这是一个前缀和的形式,我们需要在最外面用\(K\)的答案减去\(K-1\)的答案来得到最终的答案。

那么我们的\(dp\)转移可以枚举最靠前的一列满足\(j+1\)处是0的列。

那么转移为:

\(dp[i][j]=[i\times j\leq K](1-p)p^j\sum_{x=1}^i\Bigl( (\sum_{k\geq j+1}dp[x-1][k])\times(\sum_{l\geq j}dp[i-x][l])\Bigr)\)

我们要求的答案为\(dp[n][0]\)。

后面的两个求和部分可以发现是一个后缀和形式,考虑用后缀和优化转移。

比如说我们已经算完了等号右边的部分,我们可以把它加到\(dp[i][l](l\leq j)\)就可以了。

前面枚举\(i\),然后枚举\(K/i\),再去枚举\(i\),总的复杂度为\(K^2\)。

我们发现\(n​\)非常大,所以我们需要发现一些别的性质。

发当\(n\geq k\)时,第二维只能为0,所以我们令\(g[n]=dp[n][0]\)。

\[g[n]=(1-p)\sum_{i=1}^{i\leq K+1}dp[i-1][1]\times g[n-i]
\]

\[g[n]=\sum_{i=1}^{i\leq K+1}(dp[i-1][1]\times (1-p))\times g[n-i]
\]

这样我们把它转化为一个\(K+1\)次的常系数齐次线性递推。

可以用矩阵乘法优化为\(O(K^3logn)\),期望得分90,使用多项式取模可以优化至\(O(K^2logn)\sim(KlogKlogn)\)期望得分100。

注意特判\(K=0\)。

代码

#include<iostream>
#include<cstdio>
#include<cstring>
#define N 1009
using namespace std;
typedef long long ll;
const int mod=998244353;
int pos,k,n;
ll tmp[N<<1],p[N],dp[N][N],P,y,now[N],num[N],ans[N];
inline ll rd(){
ll x=0;char c=getchar();bool f=0;
while(!isdigit(c)){if(c=='-')f=1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
return f?-x:x;
}
inline ll power(ll x,ll y){
ll ans=1;
while(y){if(y&1)ans=ans*x%mod;x=x*x%mod;y>>=1;}
return ans;
}
inline void MOD(ll &x){while(x>=mod)x-=mod;}
inline void mul(ll *a,ll *b,ll *c){
for(int i=0;i<=2*pos;++i)tmp[i]=0;
for(int i=0;i<pos;++i)
for(int j=0;j<pos;++j)(tmp[i+j]+=a[i]*b[j]%mod)%=mod;
for(int i=2*pos-2;i>=pos;--i){
for(int j=0;j<pos;++j)tmp[i-pos+j]=(tmp[i-pos+j]-tmp[i]*p[j]%mod+mod)%mod;
tmp[i]=0;
}
for(int i=0;i<pos;++i)c[i]=tmp[i];
}
inline ll calc(int k){
if(!k){return power(1-P+mod,n);}
memset(dp,0,sizeof(dp));
memset(num,0,sizeof(num));
memset(ans,0,sizeof(ans));
for(int i=0;i<=k+1;++i)dp[0][i]=1;
for(int i=1;i<=k;++i)
for(int j=0;i*j<=k;++j){
ll sum=0;
for(int x=1;x<=i;++x)(sum=sum+dp[x-1][j+1]*dp[i-x][j]%mod)%=mod;
sum=sum*power(P,j)%mod*(1+mod-P)%mod;
for(int x=0;x<=j;++x)(dp[i][x]+=sum)%=mod;
}
k++;pos=k;
for(int i=1;i<=k;++i)now[i]=dp[i-1][1]*(mod+1-P)%mod;
for(int i=1;i<=k;++i)p[k-i]=mod-now[i];
num[1]=1;ans[0]=1;
int nn=n;
while(nn){
if(nn&1)mul(ans,num,ans);
mul(num,num,num);nn>>=1;
}
ll res=0;
for(int i=0;i<k;++i)MOD(res+=ans[i]*dp[i][0]%mod);
return res;
}
int main(){
n=rd();k=rd();P=rd();y=rd();P=P*power(y,mod-2)%mod;
printf("%lld",(calc(k)-calc(k-1)+mod)%mod);
return 0;
}

[NOI2017]泳池的更多相关文章

  1. [NOI2017]泳池——概率DP+线性递推

    [NOI2017]泳池 实在没有思路啊~~~ luogu题解 1.差分,转化成至多k的概率减去至多k-1的概率.这样就不用记录“有没有出现k”这个信息了 2.n是1e9,感觉要递推然后利用数列的加速技 ...

  2. BZOJ4944: [Noi2017]泳池

    BZOJ4944: [Noi2017]泳池 题目背景 久莲是个爱玩的女孩子. 暑假终于到了,久莲决定请她的朋友们来游泳,她打算先在她家的私人海滩外圈一块长方形的海域作为游泳场. 然而大海里有着各种各样 ...

  3. 【BZOJ4944】[NOI2017]泳池(线性常系数齐次递推,动态规划)

    [BZOJ4944][NOI2017]泳池(线性常系数齐次递推,动态规划) 首先恰好为\(k\)很不好算,变为至少或者至多计算然后考虑容斥. 如果是至少的话,我们依然很难处理最大面积这个东西.所以考虑 ...

  4. Luogu3824 [NOI2017]泳池 【多项式取模】【递推】【矩阵快速幂】

    题目分析: 用数论分块的思想,就会发现其实就是连续一段的长度$i$的高度不能超过$\lfloor \frac{k}{i} \rfloor$,然后我们会发现最长的非$0$一段不会超过$k$,所以我们可以 ...

  5. [学习笔记]Cayley-Hilmiton

    Cayley–Hamilton theorem - Wikipedia 其实不是理解很透彻,,,先写上 简而言之: 是一个知道递推式,快速求第n项的方法 k比较小的时候可以用矩阵乘法 k是2000,n ...

  6. NOI2010~NOI2018选做

    [NOI2010] [NOI2010]海拔 高度只需要0/1,所以一个合法方案就是一个割,平面图求最小割. [NOI2010]航空管制 反序拓扑排序,每次取出第一类限制最大的放置,这样做答案不会更劣. ...

  7. UOJ#316. 【NOI2017】泳池

    传送门 一道 \(DP\) 好题 设 \(q\) 为一个块合法的概率 套路一恰好为 \(k\) 的概率不好算,算小于等于 \(k\) 的减去小于等于 \(k-1\) 的 那么设 \(f_i\) 表示宽 ...

  8. LOJ#2304. 「NOI2017」泳池

    $n \leq 1e9$底边长的泳池,好懒啊泥萌自己看题吧,$k \leq 1000$.答案对998244353取膜. 现在令$P$为安全,$Q$为危险的概率.刚好$K$是极其不好算的,于是来算$\l ...

  9. 「NOI2017」泳池

    DP式子比后面的东西难推多了 LOJ2304 Luogu P3824 UOJ #316 题意 给定一个长度为$ n$高为$ \infty$的矩形 每个点有$ 1-P$的概率不可被选择 求最大的和底边重 ...

随机推荐

  1. 学JAVA第十五天,方法重载及构造方法进一步了解

    由于星期五生病了,所以就没写.今天上课,又来写了!!! 先来说方法的重载. 方法的重载就是有两个方法的方法名相同,但参数不一致,参数个数不一致,或参数的类型不一样. package pkg9;publ ...

  2. vue+原生JavaScript实现slideDown与slideUp[简单思路]

    整个代码如下: <template> <div style="width:400px;margin:100px auto;"> <div class= ...

  3. android使用百度地图最新sdk5.0后后代码混淆时,地图无法显示闪退问题

    描述:刚开始遇到这个问题我一步一步去排除,最后发现在初始化地图的时候,代码混淆就有问题了, 问题描述:当跳显示地图的页面APP闪退, 解决对比: 1:对于老版本百度sdk:代码混淆时语句: -libr ...

  4. Log4j配置(xml和property两种)

    本文章为转载记录,纯粹个人备忘. 一.log4j.properties 的使用详解 1.输出级别的种类 ERROR.WARN.INFO.DEBUGERROR 为严重错误 主要是程序的错误WARN 为一 ...

  5. Hibernate执行SQL语句实现查询修改功能!

    今天玩Hibernate时突然就想写写SQL语句查询... DAO : //查询 public List<?> createSqlQueryList(final String queryS ...

  6. Linux学习历程——Centos 7 passwd命令

    一.命令介绍 passwd 命令用于修改用户密码,过期时间,认证信息等. 普通用户只能使用 passwd 命令修改自身的系统密码,而 root 管理员则有权限修改其他所有人的密码.更酷的是,root ...

  7. ANT与SVN集成

    需求描述:从SVN服务器检出最新代码,编译,打包,发布测试环境. 解决方案:使用ANT官网提供的扩展工具中的svnant检出代码. 环境介绍: 操作系统:windows 7 64bit ant版本:a ...

  8. VUE的一个数据绑定与页面刷新相关的bug

    1.场景: N层嵌套的循环查询业务场景,框架是vue.其中在最后一层查完之后,还需要查其中每一项的两个属性,类型都是列表.查完之后将其赋值给一个变量用于页面展示.代码如下: (1)异常代码: getS ...

  9. FLIR 相机采集程序

    https://www.ptgrey.com/Downloads/GetSecureDownloadItem/11048 Grasshopper3 4.1 MP Mono USB3 Vision (C ...

  10. Hive JDBC:java.lang.RuntimeException: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.authorize.AuthorizationException): User: root is not allowed to impersonate anonymous

    今天使用JDBC来操作Hive时,首先启动了hive远程服务模式:hiveserver2 &(表示后台运行),然后到eclipse中运行程序时出现错误: java.sql.SQLExcepti ...