学习Tensorflow,反卷积
在深度学习网络结构中,各个层的类别可以分为这几种:卷积层,全连接层,relu层,pool层和反卷积层等。目前,在像素级估计和端对端学习问题中,全卷积网络展现了他的优势,里面有个很重要的层,将卷积后的feature map上采样(反卷积)到输入图像的尺寸空间,就是反卷积层。那么它在tensorflow里是怎么实现的呢?本篇博文讲介绍这方面的内容。
1. 反卷积函数介绍
tf.nn.conv2d_transpose(value, filter, output_shape, strides, padding='SAME', name=None)
这是tensorflow里实现反卷积的函数,value是上一层的feature map,filter是卷积核[kernel_size, kernel_size, output_channel, input_channel ],output_shape定义输出的尺寸[batch_size, height, width, channel],padding是边界打补丁的算法。
这里需要特别说明的是,output_shape和strides里的参数是相互耦合的,我们可以根据输入和输出确定strides参数(正整数),也可以根据输入和strides确定输出尺寸。
2. Alex net加反卷积层
# Copyright 2015 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== """Timing benchmark for AlexNet inference. To run, use: bazel run -c opt --config=cuda \ third_party/tensorflow/models/image/alexnet:alexnet_benchmark Across 100 steps on batch size = 128. Forward pass: Run on Tesla K40c: 145 +/- 1.5 ms / batch Run on Titan X: 70 +/- 0.1 ms / batch Forward-backward pass: Run on Tesla K40c: 480 +/- 48 ms / batch Run on Titan X: 244 +/- 30 ms / batch """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from datetime import datetime import math import time from six.moves import xrange # pylint: disable=redefined-builtin import tensorflow as tf FLAGS = tf.app.flags.FLAGS tf.app.flags.DEFINE_integer('batch_size', 1, """Batch size.""") tf.app.flags.DEFINE_integer('num_batches', 100, """Number of batches to run.""") tf.app.flags.DEFINE_integer('image_width', 345, """image width.""") tf.app.flags.DEFINE_integer('image_height', 460, """image height.""") def print_activations(t): print(t.op.name, ' ', t.get_shape().as_list()) def inference(images): """Build the AlexNet model. Args: images: Images Tensor Returns: pool5: the last Tensor in the convolutional component of AlexNet. parameters: a list of Tensors corresponding to the weights and biases of the AlexNet model. """ parameters = [] # conv1 with tf.name_scope('conv1') as scope: kernel = tf.Variable(tf.truncated_normal([11, 11, 3, 64], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(images, kernel, [1, 4, 4, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[64], dtype=tf.float32), trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) conv1 = tf.nn.relu(bias, name=scope) print_activations(conv1) parameters += [kernel, biases] # lrn1 # TODO(shlens, jiayq): Add a GPU version of local response normalization. # pool1 pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool1') print_activations(pool1) # conv2 with tf.name_scope('conv2') as scope: kernel = tf.Variable(tf.truncated_normal([5, 5, 64, 192], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(pool1, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[192], dtype=tf.float32), trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) conv2 = tf.nn.relu(bias, name=scope) parameters += [kernel, biases] print_activations(conv2) # pool2 pool2 = tf.nn.max_pool(conv2, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool2') print_activations(pool2) # conv3 with tf.name_scope('conv3') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 192, 384], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(pool2, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[384], dtype=tf.float32), trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) conv3 = tf.nn.relu(bias, name=scope) parameters += [kernel, biases] print_activations(conv3) # conv4 with tf.name_scope('conv4') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 384, 256], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(conv3, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) conv4 = tf.nn.relu(bias, name=scope) parameters += [kernel, biases] print_activations(conv4) # conv5 with tf.name_scope('conv5') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 256], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(conv4, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[256], dtype=tf.float32), trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) conv5 = tf.nn.relu(bias, name=scope) parameters += [kernel, biases] print_activations(conv5) # pool5 pool5 = tf.nn.max_pool(conv5, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='VALID', name='pool5') print_activations(pool5) # conv6 with tf.name_scope('conv6') as scope: kernel = tf.Variable(tf.truncated_normal([3, 3, 256, 1], dtype=tf.float32, stddev=1e-1), name='weights') conv = tf.nn.conv2d(pool5, kernel, [1, 1, 1, 1], padding='SAME') biases = tf.Variable(tf.constant(0.0, shape=[1], dtype=tf.float32), trainable=True, name='biases') bias = tf.nn.bias_add(conv, biases) conv6 = tf.nn.relu(bias, name=scope) parameters += [kernel, biases] print_activations(conv6) # deconv1 with tf.name_scope('deconv1') as scope: wt = tf.Variable(tf.truncated_normal([11, 11, 1, 1])) deconv1 = tf.nn.conv2d_transpose(conv6, wt, [FLAGS.batch_size, 130, 100, 1], [1, 10, 10, 1], 'SAME') print_activations(deconv1) # deconv2 with tf.name_scope('deconv2') as scope: wt = tf.Variable(tf.truncated_normal([11, 11, 1, 1])) deconv2 = tf.nn.conv2d_transpose(deconv1, wt, [FLAGS.batch_size, 260, 200, 1], [1, 2, 2, 1], 'SAME') print_activations(deconv2) return deconv2, parameters def time_tensorflow_run(session, target, info_string): """Run the computation to obtain the target tensor and print timing stats. Args: session: the TensorFlow session to run the computation under. target: the target Tensor that is passed to the session's run() function. info_string: a string summarizing this run, to be printed with the stats. Returns: None """ num_steps_burn_in = 10 total_duration = 0.0 total_duration_squared = 0.0 for i in xrange(FLAGS.num_batches + num_steps_burn_in): start_time = time.time() _ = session.run(target) duration = time.time() - start_time if i > num_steps_burn_in: if not i % 10: print ('%s: step %d, duration = %.3f' % (datetime.now(), i - num_steps_burn_in, duration)) total_duration += duration total_duration_squared += duration * duration mn = total_duration / FLAGS.num_batches vr = total_duration_squared / FLAGS.num_batches - mn * mn sd = math.sqrt(vr) print ('%s: %s across %d steps, %.3f +/- %.3f sec / batch' % (datetime.now(), info_string, FLAGS.num_batches, mn, sd)) def run_benchmark(): """Run the benchmark on AlexNet.""" with tf.Graph().as_default(): # Generate some dummy images. # Note that our padding definition is slightly different the cuda-convnet. # In order to force the model to start with the same activations sizes, # we add 3 to the image_size and employ VALID padding above. images = tf.Variable(tf.random_normal([FLAGS.batch_size, 460, 345, 3], dtype=tf.float32, stddev=1e-1)) # Build a Graph that computes the logits predictions from the # inference model. pool5, parameters = inference(images) # Build an initialization operation. init = tf.initialize_all_variables() # Start running operations on the Graph. config = tf.ConfigProto() config.gpu_options.allocator_type = 'BFC' sess = tf.Session(config=config) sess.run(init) # Run the forward benchmark. time_tensorflow_run(sess, pool5, "Forward") # Add a simple objective so we can calculate the backward pass. objective = tf.nn.l2_loss(pool5) # Compute the gradient with respect to all the parameters. grad = tf.gradients(objective, parameters) # Run the backward benchmark. time_tensorflow_run(sess, grad, "Forward-backward") def main(_): run_benchmark() if __name__ == '__main__': tf.app.run()
三. 运行结果
reference url:
https://www.tensorflow.org/versions/r0.9/api_docs/python/nn.html#convolution
http://cvlab.postech.ac.kr/research/deconvnet/
学习Tensorflow,反卷积的更多相关文章
- 学习笔记TF052:卷积网络,神经网络发展,AlexNet的TensorFlow实现
卷积神经网络(convolutional neural network,CNN),权值共享(weight sharing)网络结构降低模型复杂度,减少权值数量,是语音分析.图像识别热点.无须人工特征提 ...
- 第十四节,TensorFlow中的反卷积,反池化操作以及gradients的使用
反卷积是指,通过测量输出和已知输入重构未知输入的过程.在神经网络中,反卷积过程并不具备学习的能力,仅仅是用于可视化一个已经训练好的卷积神经网络,没有学习训练的过程.反卷积有着许多特别的应用,一般可以用 ...
- 深度学习卷积网络中反卷积/转置卷积的理解 transposed conv/deconv
搞明白了卷积网络中所谓deconv到底是个什么东西后,不写下来怕又忘记,根据参考资料,加上我自己的理解,记录在这篇博客里. 先来规范表达 为了方便理解,本文出现的举例情况都是2D矩阵卷积,卷积输入和核 ...
- 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在
1. tf.nn.moments(x, axes=[0, 1, 2]) # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...
- tensorflow 卷积/反卷积-池化/反池化操作详解
Plese see this answer for a detailed example of how tf.nn.conv2d_backprop_input and tf.nn.conv2d_bac ...
- 深度学习原理与框架- tf.nn.conv2d_transpose(反卷积操作) tf.nn.conv2d_transpose(进行反卷积操作) 对于stride的理解存在问题?
反卷积操作: 首先对需要进行维度扩张的feature_map 进行补零操作,然后使用3*3的卷积核,进行卷积操作,使得其维度进行扩张,图中可以看出,2*2的feature经过卷积变成了4*4. ...
- 深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识
深度学习-tensorflow学习笔记(1)-MNIST手写字体识别预备知识 在tf第一个例子的时候需要很多预备知识. tf基本知识 香农熵 交叉熵代价函数cross-entropy 卷积神经网络 s ...
- CNN中的卷积核及TensorFlow中卷积的各种实现
声明: 1. 我和每一个应该看这篇博文的人一样,都是初学者,都是小菜鸟,我发布博文只是希望加深学习印象并与大家讨论. 2. 我不确定的地方用了"应该"二字 首先,通俗说一下,CNN ...
- 学习TensorFlow,浅析MNIST的python代码
在github上,tensorflow的star是22798,caffe是10006,torch是4500,theano是3661.作为小码农的我,最近一直在学习tensorflow,主要使用pyth ...
随机推荐
- [测试题]幸运序列(lucky)
Description Ly喜欢幸运数字,众所周知,幸运数字就是数字位上只有4和7的数字. 但是本题的幸运序列和幸运数字完全没关系,就是一个非常非常普通的序列.哈哈,是不是感觉被耍了,没错,你就是被耍 ...
- [HNOI 2003]激光炸弹
Description 一种新型的激光炸弹,可以摧毁一个边长为R的正方形内的所有的目标.现在地图上有n个目标,用整数,表示目标在地图上的位置,每个目标都有一个价值.激光炸弹的投放是通过卫星定位的,但其 ...
- Set 集合
[题目描述]现在给你一些连续的整数,它们是从 A 到 B 的整数.一开始每个整数都属于各自的集合,然后你需要进行如下操作:每次选择两个属于不同集合的整数,如果这两个整数拥有大于等于 P 的公共质因数, ...
- permu(变态考试题)
题目描述 给定一个严格递增的序列T,求有多少个T的排列S满足:∑min(T[i],S[i])=k 输入输出格式 输入格式: 第一行两个数n,k 第二行n个数,表示T 输出格式: 一个正整数表示答案,答 ...
- ●POJ 3348 Cows
题链: http://poj.org/problem?id=3348 题解: 计算几何,凸包,多边形面积 好吧,就是个裸题,没什么可讲的. 代码: #include<cmath> #inc ...
- ●BZOJ 2209 [Jsoi2011]括号序列
题链: http://www.lydsy.com/JudgeOnline/problem.php?id=2209 题解: Splay 很好的题,但是把智障的我给恶心到了... 首先不难发现,最后没 ...
- 杜教筛进阶+洲阁筛讲解+SPOJ divcnt3
Part 1:杜教筛进阶在了解了杜教筛基本应用,如$\sum_{i=1}^n\varphi(i)$的求法后,我们看一些杜教筛较难的应用.求$\sum_{i=1}^n\varphi(i)*i$考虑把它与 ...
- Mybatis迷你版--QueryObjectFactory
今天在看JDBC4.2新规范,然后无意之间就碰到了这个东西QueryObjectFactory, 市面上orm框架有很多,在这里我就不一一列举了.那么今天我来记录一下QueryObjectFactor ...
- JFinal实现伪静态
JFinal 是基于 Java 语言的极速 WEB + ORM 框架,其核心设计目标是开发迅速.代码量少.学习简单.功能强大.轻量级.易扩展.Restful.在拥有Java语言所有优势的同时再拥有ru ...
- David MacKay:用信息论解释 '快速排序'、'堆排序' 本质与差异
这篇文章是David MacKay利用信息论,来对快排.堆排的本质差异导致的性能差异进行的比较. 信息论是非常强大的,它并不只是一个用来分析理论最优决策的工具. 从信息论的角度来分析算法效率是一件很有 ...