Given a binary tree, return the postorder traversal of its nodes' values.

For example:
Given binary tree {1,#,2,3},

   1
\
2
/
3

return [3,2,1].

Note: Recursive solution is trivial, could you do it iteratively?

经典题目,求二叉树的后序遍历的非递归方法,跟前序,中序,层序一样都需要用到栈,后序的顺序是左-右-根,所以当一个结点值被取出来时,它的左右子结点要么不存在,要么已经被访问过了。先将根结点压入栈,然后定义一个辅助结点 head,while 循环的条件是栈不为空,在循环中,首先将栈顶结点t取出来,如果栈顶结点没有左右子结点,或者其左子结点是 head,或者其右子结点是 head 的情况下。将栈顶结点值加入结果 res 中,并将栈顶元素移出栈,然后将 head 指向栈顶元素;否则的话就看如果右子结点不为空,将其加入栈,再看左子结点不为空的话,就加入栈,注意这里先右后左的顺序是因为栈的后入先出的特点,可以使得左子结点先被处理。下面来看为什么是这三个条件呢,首先如果栈顶元素如果没有左右子结点的话,说明其是叶结点,而且入栈顺序保证了左子结点先被处理,所以此时的结点值就可以直接加入结果 res 了,然后移出栈,将 head 指向这个叶结点,这样的话 head 每次就是指向前一个处理过并且加入结果 res 的结点,那么如果栈顶结点的左子结点或者右子结点是 head 的话,说明其子结点已经加入结果 res 了,那么就可以处理当前结点了。

看到这里,大家可能对 head 的作用,以及为何要初始化为 root,还不是很清楚,这里再解释一下。head 是指向上一个被遍历完成的结点,由于后序遍历的顺序是左-右-根,所以一定会一直将结点压入栈,一直到把最左子结点(或是最左子结点的最右子结点)压入栈后,开始进行处理。一旦开始处理了,head 就会被重新赋值。所以 head 初始化值并没有太大的影响,唯一要注意的是不能初始化为空,因为在判断是否打印出当前结点时除了判断是否是叶结点,还要看 head 是否指向其左右子结点,如果 head 指向左子结点,那么右子结点一定为空,因为入栈顺序是根-右-左,不存在右子结点还没处理,就直接去处理根结点了的情况。若 head 指向右子结点,则是正常的左-右-根的处理顺序。那么回过头来在看,若 head 初始化为空,且此时正好左子结点不存在,那么在压入根结点时,head 和左子结点相等就成立了,此时就直接打印根结点了,明显是错的。所以 head 只要不初始化为空,一切都好说,甚至可以新建一个结点也没问题。将 head 初始化为 root,也可以,就算只有一个 root 结点,那么在判定叶结点时就将 root 打印了,然后就跳出 while 循环了,也不会出错。代码如下:

解法一:

class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
if (!root) return {};
vector<int> res;
stack<TreeNode*> s{{root}};
TreeNode *head = root;
while (!s.empty()) {
TreeNode *t = s.top();
if ((!t->left && !t->right) || t->left == head || t->right == head) {
res.push_back(t->val);
s.pop();
head = t;
} else {
if (t->right) s.push(t->right);
if (t->left) s.push(t->left);
}
}
return res;
}
};

由于后序遍历的顺序是左-右-根,而先序遍历的顺序是根-左-右,二者其实还是很相近的,可以先在先序遍历的方法上做些小改动,使其遍历顺序变为根-右-左,然后翻转一下,就是左-右-根啦,翻转的方法我们使用反向Q,哦不,是反向加入结果 res,每次都在结果 res 的开头加入结点值,而改变先序遍历的顺序就只要该遍历一下入栈顺序,先左后右,这样出栈处理的时候就是先右后左啦,参见代码如下:

解法二:

class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
if (!root) return {};
vector<int> res;
stack<TreeNode*> s{{root}};
while (!s.empty()) {
TreeNode *t = s.top(); s.pop();
res.insert(res.begin(), t->val);
if (t->left) s.push(t->left);
if (t->right) s.push(t->right);
}
return res;
}
};

那么在 Binary Tree Preorder Traversal 中的解法二也可以改动一下变成后序遍历,改动的思路跟上面的解法一样,都是先将先序遍历的根-左-右顺序变为根-右-左,再翻转变为后序遍历的左-右-根,翻转还是改变结果 res 的加入顺序,然后把更新辅助结点p的左右顺序换一下即可,代码如下:

解法三:

class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
vector<int> res;
stack<TreeNode*> s;
TreeNode *p = root;
while (!s.empty() || p) {
if (p) {
s.push(p);
res.insert(res.begin(), p->val);
p = p->right;
} else {
TreeNode *t = s.top(); s.pop();
p = t->left;
}
}
return res;
}
};

论坛上还有一种双栈的解法,其实本质上跟解法二没什么区别,都是利用了改变先序遍历的顺序来实现后序遍历的,参见代码如下:

解法四:

class Solution {
public:
vector<int> postorderTraversal(TreeNode* root) {
if (!root) return {};
vector<int> res;
stack<TreeNode*> s1, s2;
s1.push(root);
while (!s1.empty()) {
TreeNode *t = s1.top(); s1.pop();
s2.push(t);
if (t->left) s1.push(t->left);
if (t->right) s1.push(t->right);
}
while (!s2.empty()) {
res.push_back(s2.top()->val); s2.pop();
}
return res;
}
};

Github 同步地址:

https://github.com/grandyang/leetcode/issues/145

类似题目:

Binary Tree Preorder Traversal

Binary Tree Inorder Traversal

Binary Tree Level Order Traversal

参考资料:

https://leetcode.com/problems/binary-tree-postorder-traversal/

https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/45803/java-solution-using-two-stacks

https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/45551/preorder-inorder-and-postorder-iteratively-summarization

https://leetcode.com/problems/binary-tree-postorder-traversal/discuss/45621/preorder-inorder-and-postorder-traversal-iterative-java-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Binary Tree Postorder Traversal 二叉树的后序遍历的更多相关文章

  1. [LeetCode] 145. Binary Tree Postorder Traversal 二叉树的后序遍历

    Given a binary tree, return the postorder traversal of its nodes' values. For example: Given binary ...

  2. C++版 - LeetCode 145: Binary Tree Postorder Traversal(二叉树的后序遍历,迭代法)

    145. Binary Tree Postorder Traversal Total Submissions: 271797 Difficulty: Hard 提交网址: https://leetco ...

  3. lintcode:Binary Tree Postorder Traversal 二叉树的后序遍历

    题目: 二叉树的后序遍历 给出一棵二叉树,返回其节点值的后序遍历. 样例 给出一棵二叉树 {1,#,2,3}, 1 \ 2 / 3 返回 [3,2,1] 挑战 你能使用非递归实现么? 解题: 递归程序 ...

  4. LeetCode 145. Binary Tree Postorder Traversal二叉树的后序遍历 (C++)

    题目: Given a binary tree, return the postorder traversal of its nodes' values. Example: Input: [1,nul ...

  5. leetcode题解:Binary Tree Postorder Traversal (二叉树的后序遍历)

    题目: Given a binary tree, return the postorder traversal of its nodes' values. For example:Given bina ...

  6. LeetCode 145. Binary Tree Postorder Traversal 二叉树的后序遍历 C++

    Given a binary tree, return the postorder traversal of its nodes' values. Example: Input: [,,] \ / O ...

  7. 【LeetCode】Binary Tree Postorder Traversal(二叉树的后序遍历)

    这道题是LeetCode里的第145道题. 题目要求: 给定一个二叉树,返回它的 后序 遍历. 示例: 输入: [1,null,2,3] 1 \ 2 / 3 输出: [3,2,1] 进阶: 递归算法很 ...

  8. 145 Binary Tree Postorder Traversal 二叉树的后序遍历

    给定一棵二叉树,返回其节点值的后序遍历.例如:给定二叉树 [1,null,2,3],   1    \     2    /   3返回 [3,2,1].注意: 递归方法很简单,你可以使用迭代方法来解 ...

  9. Leetcode145. Binary Tree Postorder Traversal二叉树的后序遍历

    给定一个二叉树,返回它的 后序 遍历. 进阶: 递归算法很简单,你可以通过迭代算法完成吗? 递归: class Solution { public: vector<int> res; ve ...

随机推荐

  1. 数百个 HTML5 例子学习 HT 图形组件 – 3D建模篇

    http://www.hightopo.com/demo/pipeline/index.html <数百个 HTML5 例子学习 HT 图形组件 – WebGL 3D 篇>里提到 HT 很 ...

  2. 学C#之设计模式系列笔记(2)观察者模式

    一.借鉴说明 1.<Head First Design Patterns>(中文名<深入浅出设计模式>) 2.维基百科,观察者模式,https://zh.wikipedia.o ...

  3. 【手记】WebBrowser响应页面中的blank开新窗口及window.close关闭本窗体

    注:本文适用.net 2.0+的winform项目 目的: 点击页面中的target="_blank"链接时,弹出新窗体 页面中有window.close()操作时,关闭窗体 上述 ...

  4. Java中的多线程你只要看这一篇就够了

    学习Java的同学注意了!!! 学习过程中遇到什么问题或者想获取学习资源的话,欢迎加入Java学习交流群,群号码:279558494 我们一起学Java! 引 如果对什么是线程.什么是进程仍存有疑惑, ...

  5. WaitGroup is reused before previous Wait has returned

    当你Add()之前,就Wait()了,就会发生这个错误.

  6. 【视频处理】YUV与RGB格式转换

    YUV格式具有亮度信息和色彩信息分离的特点,但大多数图像处理操作都是基于RGB格式. 因此当要对图像进行后期处理显示时,需要把YUV格式转换成RGB格式. RGB与YUV的变换公式如下: YUV(25 ...

  7. InfoPath错误,此文档库已被重命名或删除

    在使用InfoPath发布表单,发布到SharePoint服务器报错,如下介绍: 环境:Windows 2012 DateCenter + Sql 2012 + SharePoint 2013 + O ...

  8. iOS之判断字符串是否为空字符的方法

    -  (BOOL) isBlankString:(NSString *)string { if (string == nil || string == NULL) { return YES; } if ...

  9. 浅谈Android编码规范及命名规范

    前言: 目前工作负责两个医疗APP项目的开发,同时使用LeanCloud进行云端配合开发,完全单挑. 现大框架已经完成,正在进行细节模块上的开发 抽空总结一下Android项目的开发规范:1.编码规范 ...

  10. 9.PNG的制作

    1.背景自适应且不失真问题的存在 制作自适应背景图片是UI开发的一个广泛问题,也是界面设计师渴望解决的问题,我相信我们彼此都深有体会.       比如: 1.列表的背景图一定,但是列表的高度随着列表 ...