Description

Byteasar the Cryptographer works on breaking the code of BSA (Byteotian Security Agency). He has alreadyfound out that whilst deciphering a message he will have to answer multiple queries of the form"for givenintegers $a$, $b$ and $d$, find the number of integer pairs $(x,y)$ satisfying the following conditions:

$1\le x\le a$,$1\le y\le b$,$gcd(x,y)=d$, where $gcd(x,y)$ is the greatest common divisor of $x$ and $y$".

Byteasar would like to automate his work, so he has asked for your help.

TaskWrite a programme which:

reads from the standard input a list of queries, which the Byteasar has to give answer to, calculates answers to the queries, writes the outcome to the standard output.

FGD正在破解一段密码,他需要回答很多类似的问题:对于给定的整数a,b和d,有多少正整数对x,y,满足x<=a,y<=b,并且gcd(x,y)=d。作为FGD的同学,FGD希望得到你的帮助。

Input

The first line of the standard input contains one integer $n$ ($1\le n\le 50\ 000$),denoting the number of queries.

The following $n$ lines contain three integers each: $a$, $b$ and $d$($1\le d\le a,b\le 50\ 000$), separated by single spaces.

Each triplet denotes a single query.

Output

Your programme should write $n$ lines to the standard output. The $i$'th line should contain a single integer: theanswer to the $i$'th query from the standard input.

Sample Input

2
4 5 2
6 4 3

Sample Output

3
2

题解

双倍经验。去掉容斥就好了,分析见超链接。

 //It is made by Awson on 2018.1.21
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <cstdio>
#include <string>
#include <vector>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Abs(a) ((a) < 0 ? (-(a)) : (a))
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
#define Swap(a, b) ((a) ^= (b), (b) ^= (a), (a) ^= (b))
#define writeln(x) (write(x), putchar('\n'))
#define lowbit(x) ((x)&(-(x)))
using namespace std;
const int N = ;
void read(int &x) {
char ch; bool flag = ;
for (ch = getchar(); !isdigit(ch) && ((flag |= (ch == '-')) || ); ch = getchar());
for (x = ; isdigit(ch); x = (x<<)+(x<<)+ch-, ch = getchar());
x *= -*flag;
}
void write(LL x) {
if (x > ) write(x/);
putchar(x%+);
} int a, b, k, mu[N+]; void get_mu() {
int isprime[N+], prime[N+], tot = ;
memset(isprime, , sizeof(isprime)); isprime[] = , mu[] = ;
for (int i = ; i <= N; i++) {
if (isprime[i]) mu[i] = -, prime[++tot] = i;
for (int j = ; j <= tot && i*prime[j] <= N; j++) {
isprime[i*prime[j]] = ;
if (i%prime[j]) mu[i*prime[j]] = -mu[i];
else {mu[i*prime[j]] = ; break; }
}
mu[i] += mu[i-];
}
}
LL cal(int a, int b) {
if (a > b) Swap(a, b); LL ans = ;
for (int i = , last; i <= a; i = last+) {
last = Min(a/(a/i), b/(b/i));
ans += (LL)(mu[last]-mu[i-])*(a/i)*(b/i);
}
return ans;
}
void work() {
read(a), read(b), read(k); writeln(cal(a/k, b/k));
}
int main() {
int t; read(t); get_mu();
while (t--) work();
return ;
}

[POI 2007]ZAP-Queries的更多相关文章

  1. [POI 2007] Zap

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1101 [算法] 首先 , 问题可以转化为求GCD(x,y) = 1,x <= ...

  2. BZOJ 1101 Luogu P3455 POI 2007 Zap (莫比乌斯反演+数论分块)

    手动博客搬家: 本文发表于20171216 13:34:20, 原地址https://blog.csdn.net/suncongbo/article/details/78819470 URL: (Lu ...

  3. 解题:POI 2007 Tourist Attractions

    题面 事实上这份代码在洛谷过不去,因为好像要用到一些压缩空间的技巧,我并不想(hui)写(捂脸) 先预处理$1$到$k+1$这些点之间相互的最短路和它们到终点的最短路,并记录下每个点能够转移到时的状态 ...

  4. 解题:POI 2007 Driving Exam

    题面 有点意思的题 从一个位置$i$出发可以到达每一个位置即是从$1,n$出发可以到达$i$.然后有了一个做法:把图上下反转后建反图,这样就可以求从一个点$i$到达左右两侧的花费$dp[i][0/1] ...

  5. 解题:POI 2007 Weights

    题面 这是个$O(nlog^2$ $n)$的解法,因为蒟蒻博主没有看懂$O(nlog$ $n)$的更优秀的解法 显然从小到大装砝码是最优的方法,又显然从大到小装容器不会使得答案变劣,还显然砝码数具有单 ...

  6. [POI 2007] 办公楼

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1098 [算法] 显然 , 答案为补图的连通分量个数 用链表优化BFS , 时间复杂度 ...

  7. [POI 2007] 堆积木

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1109 [算法] DP [代码] #include<bits/stdc++.h& ...

  8. 【POI 2007】 山峰和山谷

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1102 [算法] 广度优先搜索 [代码] #include<bits/stdc+ ...

  9. [POI 2007] 旅游景点

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=1097 [算法] 首先,用Dijkstra算法求出2-k+1到每个点的最短路 然后,我 ...

随机推荐

  1. 项目Alpha冲刺Day11

    一.会议照片 二.项目进展 1.今日安排 熟悉框架的使用以及编写用户查看的界面以及该页面内的操作. 2.问题困难 全局的日期转换出现问题,在序列化的时候是按照配置来的,但是反序列化的时候就错了,问题待 ...

  2. Linux中Eclipse下搭建Web开发环境

    0. 准备工作 java环境,Linux下基本上都有含开源jdk的库,可直接下载,且不用配置环境变量,当然也可以官网下载后自己配置: Eclipse Neon,注意看清是64位还是32位,下载的应该是 ...

  3. 第201621123043 《Java程序设计》第13周学习总结

    1. 本周学习总结 以你喜欢的方式(思维导图.OneNote或其他)归纳总结多网络相关内容. 2. 为你的系统增加网络功能(购物车.图书馆管理.斗地主等)-分组完成 系统还在创建中..... 为了让你 ...

  4. scrapy 模拟登陆

    import scrapy import urllib.request from scrapy.http import Request,FormRequest class LoginspdSpider ...

  5. iOS开发-OC数据类型

    以下是OC中的实例,Swift部分不适用 iOS中的注释 // 单行注释 // 注释对代码起到解释说明的作用,注释是给程序员看的,不参与程序运行 /*  多行注释   Xcode快捷键   全选 cm ...

  6. bzoj千题计划214:bzoj3589: 动态树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3589 树链剖分 用线段数维护扫描线的方式来写,标记只打不下传 #include<cstdio& ...

  7. JavaScript简写技巧总结

    在日常工作中,JavaScript一些常用的简写技巧,将直接影响到我们的开发效率,现将常用技巧整理如下: 1. 空(null, undefined)验证     当我们创建了一个新的变量,我们通常会去 ...

  8. js中严格模式

    我们在js中可以使用"use strict";定义了我们在接下来的文档输写中 将按照严格模式进行: function(){ "use strict'; ;// 在这里我们 ...

  9. python subprocess模块使用总结

    一.subprocess以及常用的封装函数运行python的时候,我们都是在创建并运行一个进程.像Linux进程那样,一个进程可以fork一个子进程,并让这个子进程exec另外一个程序.在Python ...

  10. SpringCloud的Hystrix(一) 一个消费者内的两个服务监控

    一.概念与定义 1.服务雪崩 在微服务架构中,整个系统按业务拆分出一个个服务,这些服务之间可以相互调用(RPC),为了保证服务的高可用,单个服务通常会集群部署. 但是由于网络原因或自身原因,服务并不能 ...