Description

题库链接

\[f(n)=\sum_{i=0}^n\sum_{j=0}^i S(i,j)\times 2^j \times (j!)\]

\(S(i, j)\) 表示第二类斯特林数。对 \(998244353\) 取模。

\(1\leq n\leq 100000\)

Solution

由于 \(S(i,j)=0,i\leq j\) ,我们可以把式子改写成

\[f(n)=\sum_{i=0}^n\sum_{j=0}^n S(i,j)\times 2^j \times (j!)\]

那么

\[f(n)=\sum_{j=0}^n 2^j \times (j!)\times\sum_{i=0}^n S(i,j)\]

把 \(S(i, j)\) 的通项公式代入

\[\begin{aligned}f(n)&=\sum_{j=0}^n 2^j \times (j!)\times\sum_{i=0}^n \sum_{k=0}^j\frac{(-1)^k}{k!}\frac{(j-k)^i}{(j-k)!}\\&=\sum_{j=0}^n 2^j \times (j!)\times\sum_{k=0}^j\frac{(-1)^k}{k!}\frac{\sum\limits_{i=0}^n(j-k)^i}{(j-k)!}\end{aligned}\]

\[\begin{aligned}A(x)&=\sum_{i=0}^\infty \frac{(-1)^i}{i!}x^i\\B(x)&=\sum_{i=0}^\infty\frac{\sum\limits_{k=0}^ni^k}{i!}x^i\end{aligned}\]

那么

\[f(n)=\sum_{j=0}^n 2^j\times(j!)\times(A\otimes B)(j)\]

\(\text{NTT}\) 优化即可。

Code

#include <bits/stdc++.h>
using namespace std;
const int N = 100000*4, yzh = 998244353; int n, inv[N+5], a[N+5], b[N+5], len, L, R[N+5]; int quick_pow(int a, int b) {
int ans = 1;
while (b) {
if (b&1) ans = 1ll*ans*a%yzh;
b >>= 1, a = 1ll*a*a%yzh;
}
return ans;
}
void NTT(int *A, int o) {
for (int i = 0; i < len; i++) if (i < R[i]) swap(A[i], A[R[i]]);
for (int i = 1; i < len; i <<= 1) {
int gn = quick_pow(3, (yzh-1)/(i<<1)), x, y;
if (o == -1) gn = quick_pow(gn, yzh-2);
for (int j = 0; j < len; j += (i<<1)) {
int g = 1;
for (int k = 0; k < i; k++, g = 1ll*g*gn%yzh) {
x = A[j+k], y = 1ll*g*A[j+k+i]%yzh;
A[j+k] = (x+y)%yzh, A[j+k+i] = (x-y)%yzh;
}
}
}
}
void work() {
scanf("%d", &n); inv[0] = inv[1] = 1;
for (int i = 2; i <= n; i++) inv[i] = -1ll*yzh/i*inv[yzh%i]%yzh;
for (int i = 1; i <= n; i++) inv[i] = 1ll*inv[i]*inv[i-1]%yzh;
for (int i = 0; i <= n; i++)
if (i&1) a[i] = -inv[i]; else a[i] = inv[i];
b[0] = 1; b[1] = n+1;
for (int i = 2; i <= n; i++)
b[i] = 1ll*inv[i]*(quick_pow(i, n+1)-1)%yzh*quick_pow(i-1, yzh-2)%yzh;
for (len = 1; len <= (n<<1); len <<= 1) L++;
for (int i = 0; i < len; i++) R[i] = (R[i>>1]>>1)|((i&1)<<(L-1));
NTT(a, 1), NTT(b, 1);
for (int i = 0; i < len; i++) a[i] = 1ll*a[i]*b[i]%yzh;
NTT(a, -1);
for (int i = 0, inv = quick_pow(len, yzh-2); i < len; i++)
a[i] = 1ll*a[i]*inv%yzh;
int ans = 0;
for (int i = 0, ad = 1; i <= n; i++, ad = 2ll*ad%yzh*i%yzh)
(ans += 1ll*a[i]*ad%yzh) %= yzh;
printf("%d\n", (ans+yzh)%yzh);
}
int main() {work(); return 0; }

[TJOI 2016&HEOI 2016]求和的更多相关文章

  1. [TJOI 2016&HEOI 2016]排序

    Description 在2016年,佳媛姐姐喜欢上了数字序列.因而他经常研究关于序列的一些奇奇怪怪的问题,现在他在研究一个难题 ,需要你来帮助他.这个难题是这样子的:给出一个1到n的全排列,现在对这 ...

  2. [HEOI 2016] sort

    [HEOI 2016] sort 解题报告 码线段树快调废我了= = 其实这题貌似暴力分很足,直接$STL$的$SORT$就能$80$ 正解: 我们可以二分答案来做这道题 假设我们二分的答案为$a$, ...

  3. PHPStorm 2016.2 - 2016.3许可证服务器

    最快,最安全的选择,以激活您的PHPStorm 2016.2 - 2016.3,这是足够的激活服务器,软件将自动激活.该过程将不断更新,如果不工作评价写入,如果有,以激活没有列出的服务器也可以说. 通 ...

  4. Windows Server 2016 + SCO 2016 安装及配置介绍

    Windows Server 2016 + SCO 2016 安装及配置介绍 高文龙关注1人评论6332人阅读2017-02-26 23:23:02 Windows Server 2016 + SCO ...

  5. 「HEOI 2016/TJOI 2016」求和

    题目链接 戳我 \(Solution\) 先化简式子: \[f(n)=\sum_{i=0}^n\sum_{j=0}^i\begin{Bmatrix} i \\ j \end {Bmatrix}*2^j ...

  6. 解题:HEOI 2016 求和

    题面 我们需要知道这样一个东西(大概叫 斯特林公式?) $S(i,j)=\frac{1}{j!}\sum\limits_{k=0}^{j}(-1)^k C_j^k(j-k)^i$ 那么就是推啊 $=\ ...

  7. HEOI 2016 游记

    闲来无事,把这玩意儿补上. OI生涯中第一次正经的考试.挂的很惨. Day -1 不小心把机油(雾)sm惹毛了. 好像没啥别的事儿. Day 0 说好了上午直接去机房,然而临时说让我们上完前两节课再去 ...

  8. 数据结构(并查集||树链剖分):HEOI 2016 tree

    [注意事项] 为了体现增强版,题目限制和数据范围有所增强: 时间限制:1.5s 内存限制:128MB 对于15% 的数据,1<=N,Q<=1000. 对于35% 的数据,1<=N,Q ...

  9. 字符串[未AC](后缀自动机):HEOI 2016 str

    超级恶心,先后用set维护right,再用主席树维护,全部超时,本地测是AC的.放心,BZOJ上还是1S限制,貌似只有常数优化到一定境界的人才能AC吧. 总之我是精神胜利了哦耶QAQ #include ...

随机推荐

  1. 【R语言系列】R语言初识及安装

    一.R是什么 R语言是由新西兰奥克兰大学的Ross Ihaka和Robert Gentleman两个人共同发明. 其词法和语法分别源自Schema和S语言. R定义:一个能够自由幼小的用于统计计算和绘 ...

  2. bug终结者 团队作业第一周

    bug终结者 团队作业第一周 小组组员及人员分工 小组成员 组长: 20162323 周楠 组员: 20162302 杨京典 20162322 朱娅霖 20162327 王旌含 20162328 蔡文 ...

  3. verilog学习笔记(4)_有限状态机

    有限状态机: 有限状态机是由寄存器组和组合逻辑构成的硬件时序电路: - 其状态(即由寄存器组的1和0的组合状态所构成的有限个状态)只能在同一时钟跳变沿的情况下才能从一个状态转向另一个状态: - 究竟转 ...

  4. 《javascript设计模式与开发实践》阅读笔记(16)—— 状态模式

    状态模式 会区分事物内部的状态,事物内部状态的改变往往会带来事物的行为改变.比如电灯的开关是开还是关,在外界的表现就完全不同. 电灯例子 按照常规思路,实现一个电灯就是构造一个电灯类,然后指定一下它的 ...

  5. Python内置函数(24)——set

    英文文档: class set([iterable]) Return a new set object, optionally with elements taken from iterable. s ...

  6. linux下安装 配置 redis数据库

    通过终端命令安装(推荐): 1 确保更新源服务器能正常使用 如果没有更换更新源服务器,那么可能一直都下不了软件.欢迎参考我之前的博文来更换成国内的镜像服务器http://www.cnblogs.com ...

  7. mysql 查询select语句汇总

    数据准备: 创建表: create table students( id int unsigned primary key auto_increment not null, name varchar( ...

  8. idea的spring boot项目,运行时不要显示在dashboard中

    将对应项目的上图配置,取消勾选即可.

  9. 集合之深入理解HashMap

    Hashmap是一种非常常用的.应用广泛的数据类型 1.hashmap的数据结构 要知道hashmap是什么,首先要搞清楚它的数据结构,在java编程语言中,最基本的结构就是两种,一个是数组,另外一个 ...

  10. priority queue优先队列初次使用

    题目,排队打印问题 Input Format One line with a positive integer: the number of test cases (at most 20). Then ...