Description

在一个凹槽中放置了 n 层砖块、最上面的一层有n 块砖,从上到下每层依次减少一块砖。每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示。

14 15  4  3  23
33 33 76 2
2 13 11
22 23
31

如果你想敲掉第 i 层的第j 块砖的话,若i=1,你可以直接敲掉它;若i>1,则你必须先敲掉第i-1 层的第j 和第j+1 块砖。

你现在可以敲掉最多 m 块砖,求得分最多能有多少。

Input

输入文件的第一行为两个正整数 n 和m;接下来n 行,描述这n 层砖块上的分值a[i][j],满足0≤a[i][j]≤100。

对于 100%的数据,满足1≤n≤50,1≤m≤n*(n+1)/2;

Output

输出文件仅一行为一个正整数,表示被敲掉砖块的最大价值总和。

Sample Input

4 5
2 2 3 4
8 2 7
2 3
49

Sample Output

19

题解

分析题目中的选取条件,我们会发现:
这道题最终解的形态(选中的数字)可以描述成若干个三角形相互连接或重叠,如上图中的红色砖块,由两个蓝色标识的三角形部分重叠而成。
将最终解的形态(选中的数字)的每列最下层点用线画出(图中的蓝线),可以发现:
1、构成的轮廓线是一条锯齿状的折线;
2、轮廓线上的相邻点布局在三角形的相列与相邻行上,即如果从左向右观察列,轮廓线上的点只能从其左列的上方行或下方行连过来;
3、轮廓线上点所在列的上方点一定全部被选中。
则把原问题转化为沟画出重叠三角形的锯齿状轮廓折线,找到一条合法的路径,使得围在轮廓线内的数字代价和最大。
另,根据第 3 点分析,轮廓线上点所在列的上方点一定全部被选中,可将选中的数字压缩到轮廓线上点,问题进一步转化为求轮廓线上点的代价和最大。

算法

1、预处理:设 $cost[i,j]$表示选取第 $i$ 行第 $j$ 个,需要一起选取的其他点的个数。即与这个点同一列,且在这个点之上的点的个数。
2、$sum[i,j]$表示选取第 $i$ 行第 $j$ 个,需要一起选取的其他点的数值和。即与这个点同一列,且在这个点之上的点的数值之和。这样,$cost[]$,$sum[]$分别记录了走到每个格子本列的数字个数与代价和。
3、因为对于任意一列的任意一个数字,转移到它的前提与之前的方案无关,所以满足了$dp$ 的无后效性。 同时当前列必定要由之前的某个最优状态转移过来,所以又满足了最优子结构的性质。故 $DP$ 是可行的。

 //It is made by Awson on 2017.10.31
#include <set>
#include <map>
#include <cmath>
#include <ctime>
#include <queue>
#include <stack>
#include <vector>
#include <cstdio>
#include <string>
#include <cstdlib>
#include <cstring>
#include <iostream>
#include <algorithm>
#define LL long long
#define Max(a, b) ((a) > (b) ? (a) : (b))
#define Min(a, b) ((a) < (b) ? (a) : (b))
using namespace std; int n, m;
int mp[][], cnt[][];
int f[][][]; void work() {
scanf("%d%d", &n, &m);
for (int i = ; i <= n; i++) for (int j = ; j <= n-i+; j++) scanf("%d", &mp[i][j]);
for (int i = ; i <= n; i++)
for (int j = ; j <= n-i+; j++) {
if (i- >= ) mp[i][j] += mp[i-][j+];
cnt[i][j] = (i+)/;
}
memset(f, -, sizeof(f));
f[][][] = ; f[][][] = mp[][];
for (int y = ; y <= n; y++)
for (int x = ; x <= n-y+; x++)
for (int k = ; k <= m; k++)
if (f[x][y][k] != -) {
f[x+][y][k+cnt[x+][y]] = Max(f[x+][y][k+cnt[x+][y]], f[x][y][k]+mp[x+][y]);
if (x == ) f[x][y+][k] = Max(f[x][y+][k], f[x][y][k]);
else f[x-][y+][k+cnt[x-][y+]] = Max(f[x-][y+][k+cnt[x-][y+]], f[x][y][k]+mp[x-][y+]);
}
printf("%d\n", f[][n+][m]);
}
int main() {
work();
return ;
}

[HNOI 2004]敲砖块的更多相关文章

  1. Luogu 1437 [HNOI2004]敲砖块 (动态规划)

    Luogu 1437 [HNOI2004]敲砖块 (动态规划) Description 在一个凹槽中放置了 n 层砖块.最上面的一层有n块砖,从上到下每层依次减少一块砖.每块砖都有一个分值,敲掉这块砖 ...

  2. 洛谷 P1437 [HNOI2004]敲砖块 解题报告

    P1437 [HNOI2004]敲砖块 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下所示. 1 ...

  3. [HNOI2004]敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

  4. P1437 [HNOI2004]敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

  5. 【题解】HNOI2004敲砖块

    题目传送门:洛谷1437 决定要养成随手记录做过的题目的好习惯呀- 这道题目乍看起来和数字三角形有一点像,但是仔细分析就会发现,因为选定一个数所需要的条件和另一个数所需要的条件会有重复的部分,所以状态 ...

  6. 洛谷P1437 [HNOI2004]敲砖块(dp)

    题目背景 无 题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 ...

  7. [HNOI2004]打砖块(敲砖块)

    题目:codevs1257.洛谷P1437 题目大意:有一些砖块呈倒三角形状,每块砖敲掉后有一个分数.除第一行外,敲掉一块砖必须先把上面两块砖敲掉.现在你能敲m块砖,求能得到的最大分数. 解题思路:此 ...

  8. yzoj P2343 & 洛谷 P1437 [HNOI2004]敲砖块

    题意 在一个凹槽中放置了N层砖块,最上面的一层油N块砖,从上到下每层一次减少一块砖.每块砖都有一个分值,敲掉这块砖就能得到相应的分值,如图所示. 如果你想敲掉第i层的第j块砖的话,若i=1,你可以直接 ...

  9. [LUOGU1437] 敲砖块

    题目描述 在一个凹槽中放置了 n 层砖块.最上面的一层有n 块砖,从上到下每层依次减少一块砖.每块砖 都有一个分值,敲掉这块砖就能得到相应的分值,如下图所示. 14 15 4 3 23 33 33 7 ...

随机推荐

  1. 简单hdfs相关操作命令

    HDFS常用操作命令 启动hdfs #start-all.sh 查看hdfs的配置文件 #cat hdfs-site.sh #hadoop fs -put /soft/jdk / #HDFS上传文件命 ...

  2. C语言指针作业总结

    学号 姓名 作业地址 PTA实验作业5 PTA排名2 阅读代码2 总结1 代码规范 总分 是否推荐博客 推荐理由 32 **薇 http://www.cnblogs.com/linyiwei/p/80 ...

  3. Alpha冲刺Day12

    Alpha冲刺Day12 一:站立式会议 今日安排: 由黄腾飞和张梨贤继续完成政府人员模块下的风险管控子模块下的分级统计展示 由林静继续完成企业注册模块 由周静平完成登录页面模块 二:实际项目进展 人 ...

  4. Python 线程复习

    修改全局变量,设立flag来避免线程间数据冲突,低效率版 from threading import Thread import time g_num=0 g_flag = 1 def test1() ...

  5. nyoj 过河问题

    过河问题 时间限制:1000 ms  |  内存限制:65535 KB 难度:5   描述 在漆黑的夜里,N位旅行者来到了一座狭窄而且没有护栏的桥边.如果不借助手电筒的话,大家是无论如何也不敢过桥去的 ...

  6. http客户端请求及服务端详解

    http客户端请求及服务端详解 引言 HTTP 是一个属于应用层的面向对象的协议,由于其简捷.快速的方式,适用于分布式超媒体信息系统.它于1990年提出,经过几年的使用与发展,得到不断地完善和 扩展. ...

  7. APP手机端加载不到资源服务器后台解决参考

    今天发现app登录时,报could not get resource,日志中打印的是redis相关的错误,于是开始一步步检查错误! 后台架构:redis+mysql+elk+tomcat+zookee ...

  8. Python-面向对象(一)-Day7

    Day7-面向对象基础 1一.isinstance(obj, cls) 1二.issubclass(sub, super) 1三.异常处理 11.异常基础 12.异常种类 23.异常其他结构 54.主 ...

  9. Linux背景知识(1)RedHat和Centos

    Redhat有收费的商业版和免费的开源版,商业版的业内称之为RHEL(Red Hat Enterprise Linux)系列, 而这个CentOS(Community ENTerprise Opera ...

  10. LayUI之table数据表格获取行、行高亮等相关操作

    前言 目前LayUI数据表格既美观有不乏一些实用功能.基本上表格应有的操作已经具备,LayUI作者[贤心]肯定是煞费苦心去优化,此处致敬.但是实话实话,如果单纯那数据表格功能来说,EasUI的数据表格 ...