【网络流24题21】最长k可重区间集问题
题面戳我
题目描述
对于给定的开区间集合I和正整数k,计算开区间集合I的最长k可重区间集的长度。
输入格式:
的第 1 行有 2 个正整数n和k,分别表示开区间的个数和开区间的可重迭数。接下来的 n行,每行有 2 个整数,表示开区间的左右端点坐标。
输出格式:
将计算出的最长 k可重区间集的长度输出
输入输出样例
输入样例#1:
4 2
1 7
6 8
7 10
9 13
输出样例#1:
15
说明
对于100%的数据,1≤n≤500,1≤k≤3
sol
费用流建图
先把点离散化掉
对于剩下的至多1000各点,每个点向下一个点连容量为k,费用为0的边。
对于每组\(l_i,r_i\),从\(l_i\)向\(r_i\)连容量为1,费用为长度(即\(r_i-l_i\))的边。
为了限流量所以源点\(S\)向离散化后第一个点连容量为k费用为0的边,最后一个点向汇点\(T\)连容量为k费用为0的边。(其实只要限一边就可以了)
然后上图中跑最大费用流,可以把费用全部取负然后跑最小费用流。
code
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
#define inf 1000000000
const int _ = 100005;
struct edge{int to,next,w,cost;}a[_<<1];
int n,k,l[_],r[_],o[_],tot,s,t,head[_],cnt=1,vis[_],pe[_],pv[_];
long long dis[_],ans;
queue<int>Q;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
void link(int u,int v,int w,int cost)
{
a[++cnt]=(edge){v,head[u],w,cost};
head[u]=cnt;
a[++cnt]=(edge){u,head[v],0,-cost};
head[v]=cnt;
}
bool spfa()
{
memset(dis,63,sizeof(dis));
dis[s]=0;Q.push(s);
while (!Q.empty())
{
int u=Q.front();Q.pop();
for (int e=head[u];e;e=a[e].next)
{
int v=a[e].to;
if (a[e].w&&dis[v]>dis[u]+a[e].cost)
{
dis[v]=dis[u]+a[e].cost;
pe[v]=e;pv[v]=u;
if (!vis[v]) vis[v]=1,Q.push(v);
}
}
vis[u]=0;
}
return dis[t]<dis[0];
}
int main()
{
n=gi();k=gi();
for (int i=1;i<=n;i++)
o[i]=l[i]=gi(),o[i+n]=r[i]=gi();
sort(o+1,o+2*n+1);
tot=unique(o+1,o+2*n+1)-o-1;
for (int i=1,L,R;i<=n;i++)
{
if (l[i]>r[i]) swap(l[i],r[i]);
L=lower_bound(o+1,o+tot+1,l[i])-o;
R=lower_bound(o+1,o+tot+1,r[i])-o;
link(L,R,1,l[i]-r[i]);
}
for (int i=1;i<tot;i++)
link(i,i+1,inf,0);
s=tot+1;t=tot+2;
link(s,1,k,0);link(tot,t,k,0);
while (spfa())
{
int sum=inf;
for (int i=t;i!=s;i=pv[i])
sum=min(sum,a[pe[i]].w);
for (int i=t;i!=s;i=pv[i])
a[pe[i]].w-=sum,a[pe[i]^1].w+=sum,ans+=1ll*sum*a[pe[i]].cost;
}
printf("%lld\n",-ans);
return 0;
}
【网络流24题21】最长k可重区间集问题的更多相关文章
- 【网络流24题】最长k可重区间集(费用流)
[网络流24题]最长k可重区间集(费用流) 题面 Cogs Loj 洛谷 题解 首先注意一下 这道题目里面 在Cogs上直接做就行了 洛谷和Loj上需要判断数据合法,如果\(l>r\)就要交换\ ...
- LibreOJ #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 内存限制:256 MiB时间限制:1000 ms标准输入输出 题目类型:传统评测方式:文本比较 上传者: 匿名 提交提交记录统计讨论测试数据 ...
- loj #6014. 「网络流 24 题」最长 k 可重区间集
#6014. 「网络流 24 题」最长 k 可重区间集 题目描述 给定实直线 L LL 上 n nn 个开区间组成的集合 I II,和一个正整数 k kk,试设计一个算法,从开区间集合 I II 中选 ...
- 【网络流24题】最长k可重区间集问题(费用流)
[网络流24题]最长k可重区间集问题 [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a>< ...
- 网络流24题:最长 k 可重区间集问题题解
最长 k 可重区间集问题题解: 突然想起这个锅还没补,于是来把这里补一下qwq. 1.题意简述: 有\(n\)个开区间,这\(n\)个开区间组成了一个直线\(L\),要求选择一些区间,使得在直线\(L ...
- 【刷题】LOJ 6014 「网络流 24 题」最长 k 可重区间集
题目描述 给定实直线 \(L\) 上 \(n\) 个开区间组成的集合 \(I\) ,和一个正整数 \(k\) ,试设计一个算法,从开区间集合 \(I\) 中选取出开区间集合 \(S \subseteq ...
- 「网络流 24 题」最长 k 可重区间集
给定区间集合$I$和正整数$k$, 计算$I$的最长$k$可重区间集的长度. 区间离散化到$[1,2n]$, $S$与$1$连边$(k,0)$, $i$与$i+1$连边$(k,0)$, $2n$与$T ...
- 【PowerOJ1756&网络流24题】最长k可重区间集问题(费用流)
题意: 思路: [问题分析] 最大权不相交路径问题,可以用最大费用最大流解决. [建模方法] 方法1 按左端点排序所有区间,把每个区间拆分看做两个顶点<i.a><i.b>,建立 ...
- 网络流24题之最长k可重区间集问题
对于每个点向后一个点连流量为k费用为0的边 对每一区间连l到r流量为1费用为r-l的边 然后最小费用最大流,输出取反 一开始写的r-l+1错了半天... By:大奕哥 #include<bits ...
- 【刷题】LOJ 6227 「网络流 24 题」最长k可重线段集问题
题目描述 给定平面 \(\text{xoy}\) 上 \(n\) 个开线段组成的集合 \(\text{I}\) ,和一个正整数 \(k\) ,试设计一个算法. 从开线段集合 \(\text{I}\) ...
随机推荐
- Quartz动态改变任务时间
基于quartz-2.2 的动态任务调度 Quartz是一个完全由java编写的开源作业调度框架. 调度器 Quartz框架的核心是调度器.调度器负责管理Quartz应用运行时环境.调度器不是靠自己做 ...
- Spring-mvc 静态资源不拦截
在Spring-mvc.xml文件中加入这个就可以了 <!-- 用于对静态文件进行解析 --> <mvc:annotation-driven /> <mvc:resour ...
- 手把手教你树莓派实现简易室内监控系统(C)之BOA服务器的搭建
本篇主要讲利用BOA服务器做室内监控系统的服务器端. 古人云:万事开头靠百度,实在不行就Google.小编也是一步一步的,亲自搭建成功,不能说是万全之策,仅仅是给大家一个参考就满足了. 第一步: 1. ...
- java并发 - 自底向上的原理分析
[TOC] 事先声明,我只是java并发的新手,这篇文章也只是我阅读<java并发编程的艺术>一书(内容主要涉及前3章)的一些总结和感悟.希望大家能多多讨论,对于错误的地方还请指出. 0. ...
- postman 中调试接口的小记录
1.form-data: 就是http请求中的multipart/form-data,它会将表单的数据处理为一条消息,以标签为单元,用分隔符分开.既可以上传键值对,也可以上传文件.当上传的字段是文件 ...
- 设置TCP_USER_TIMEOUT参数来判断tcp连接是否断开
[TOC] 1. bug描述 前段时间遇到这样的一个问题,openstack一个控制节点宕机后,在宕机后一段时间内创建的虚拟机,一直卡在创建中的状态.有的甚至要等到16分钟之后虚拟机才会切换到下一个状 ...
- redis 突然大量逐出导致读写请求block
现象 redis作为缓存场景使用,内存耗尽时,突然出现大量的逐出,在这个逐出的过程中阻塞正常的读写请求,导致 redis 短时间不可用: 背景 redis 中的LRU是如何实现的? 当mem_used ...
- Android 热补丁实践之路
最新github上开源了很多热补丁动态修复框架,主要的大致有: https://github.com/dodola/HotFix https://github.com/jasonross/Nuwa h ...
- Android 插件化方案(动态加载)总结
1.作用 大多数Android开发人员开始接触这个问题是因为 App 爆棚了,方法数超过了一个 Dex 最大方法数 65535 的上限,因而便有了插件化的概念,将一个 App 划分为多个插件(Apk ...
- HighCharts之2D含有负值的面积图
HighCharts之2D含有负值的面积图 1.HighCharts之2D含有负值的面积图源码 AreaNegative.html: <!DOCTYPE html> <html> ...