【BZOJ2875】随机数生成器(矩阵快速幂)

题面

Description

栋栋最近迷上了随机算法,而随机数是生成随机算法的基础。栋栋准备使用线性同余法(Linear Congruential Method)来生成一个随机数列,这种方法需要设置四个非负整数参数m,a,c,X[0],按照下面的公式生成出一系列随机数{Xn}:

\[X[n+1]=(aX[n]+c) mod m
\]

其中mod m表示前面的数除以m的余数。从这个式子可以看出,这个序列的下一个数总是由上一个数生成的。

用这种方法生成的序列具有随机序列的性质,因此这种方法被广泛地使用,包括常用的C++和Pascal的产生随机数的库函数使用的也是这种方法。

栋栋知道这样产生的序列具有良好的随机性,不过心急的他仍然想尽快知道X[n]是多少。由于栋栋需要的随机数是0,1,...,g-1之间的,他需要将X[n]除以g取余得到他想要的数,即X[n] mod g,你只需要告诉栋栋他想要的数X[n] mod g是多少就可以了。

Input

输入包含6个用空格分割的整数m,a,c,X[0],n和g,其中a,c,X[0]是非负整数,m,n,g是正整数。

Output

输出一个数,即X[n] mod g

Sample Input

11 8 7 1 5 3

Sample Output

2

Hint

【样例说明】

计算得X[n]=X[5]=8,故(X[n] mod g) = (8 mod 3) = 2

【数据规模】

40%的数据中m为质数

30%的数据中m与a-1互质

50%的数据中n<=10^6

100%的数据中n<=10^18

40%的数据m,a,c,X[0]<=10^4

85%的数据m,a,c,X[0]<=10^9

100%的数据中m,a,c,X[0]<=10^18

100%的数据中g<=10^8

对于所有数据,n>=1,m>=1,a>=0,c>=0,X[0]>=0,g>=1。

题解

直接矩阵快速幂

乘法要用龟速乘

没了。。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
inline ll read()
{
ll x=0,t=1;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
struct Dalao
{
ll s[2][2];
void clear()
{
memset(s,0,sizeof(s));
}
void init()
{
s[0][0]=s[1][1]=1;
}
};
ll M,A,C,X0,G,N;
ll ppow(ll a,ll b,ll MOD)
{
ll s=0;
while(b)
{
if(b&1)s=(s+a)%MOD;
a=(a+a)%MOD;
b>>=1;
}
return s;
}
Dalao operator *(Dalao a,Dalao b)
{
Dalao s;s.clear();
for(int i=0;i<2;++i)
for(int j=0;j<2;++j)
for(int k=0;k<2;++k)
(s.s[i][j]+=ppow(a.s[i][k],b.s[k][j],M))%=M;
return s;
}
Dalao Pow(Dalao a,ll b)
{
Dalao s;s.clear();s.init();
while(b)
{
if(b&1)s=s*a;
a=a*a;
b>>=1;
}
return s;
}
int main()
{
M=read();A=read();C=read();X0=read();N=read();G=read();
Dalao k;
k.s[0][0]=A;k.s[0][1]=0;k.s[1][0]=k.s[1][1]=1;
k=Pow(k,N);
cout<<((ppow(X0,k.s[0][0],M)+ppow(C,k.s[1][0],M))%M)%G<<endl;
return 0;
}

【BZOJ2875】随机数生成器(矩阵快速幂)的更多相关文章

  1. bzoj2875随机数生成器——矩阵快速幂

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2875 矩阵快速幂,把x和c分开求,最后加上即可: 为防止爆long long,要用快速乘. ...

  2. [日常摸鱼]bzoj2875[NOI2012]随机数生成器-矩阵快速幂

    好裸的矩阵快速幂-然而我一开始居然构造不出矩阵- 平常两个的情况都是拿相邻两项放在矩阵里拿去递推的-然后我就一直构造不出来-其实把矩阵下面弄成1就好了啊orz #include<cstdio&g ...

  3. BZOJ 2875: [Noi2012]随机数生成器( 矩阵快速幂 )

    矩阵快速幂...+快速乘就OK了 ----------------------------------------------------------------------------------- ...

  4. [luogu2044][NOI2012] 随机数生成器 [矩阵快速幂]

    题面: 传送门 思路: 看一眼这个公式: $x\left[n+1\right]=\left(a\ast x\left[n\right]+c\right) mod m$ 递推,数据范围$n\leq 10 ...

  5. [vijos1725&bzoj2875]随机数生成器<矩阵乘法&快速幂&快速乘>

    题目链接:https://vijos.org/p/1725 http://www.lydsy.com/JudgeOnline/problem.php?id=2875 这题是前几年的noi的题,时间比较 ...

  6. BZOJ-2875 随机数生成器 矩阵乘法快速幂+快速乘

    题目没给全,吃X了... 2875: [Noi2012]随机数生成器 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 1479 Solved: 829 ...

  7. 【BZOJ2875】【NOI2012】随机数生成器(矩阵快速幂)

    [BZOJ2875]随机数生成器(矩阵快速幂) 题面 Description 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Me ...

  8. [NOI2012]随机数生成器【矩阵快速幂】

    NOI2012 随机数生成器 题目描述 栋栋最近迷上了随机算法,而随机数是生成随机算法的基础.栋栋准备使用线性同余法(Linear Congruential Method)来生成一个随机数列,这种方法 ...

  9. 矩阵快速幂 HDU 4565 So Easy!(简单?才怪!)

    题目链接 题意: 思路: 直接拿别人的图,自己写太麻烦了~ 然后就可以用矩阵快速幂套模板求递推式啦~ 另外: 这题想不到或者不会矩阵快速幂,根本没法做,还是2013年长沙邀请赛水题,也是2008年Go ...

随机推荐

  1. [php]通过http post发送json数据

    function http_post_data($url, $data_string) { $ch = curl_init(); curl_setopt($ch, CURLOPT_POST, 1); ...

  2. [Poj3128]Leonardo's Notebook

    [Poj3128]Leonardo's Notebook 标签: 置换 题目链接 题意 给你一个置换\(B\),让你判断是否有一个置换\(A\)使得\(B=A^2\). 题解 置换可以写成循环的形式, ...

  3. easyui datagrid 右边框被隐藏

    问题前: 如下图: 解决思路: 待文档加载完成后再执行dategrid函数 $(function () { $("#tt").datagrid({ //....... }); }) ...

  4. 使用PowerDesigner对NAME和COMMENT互相转换

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 在使用PowerDesigner对数据库进行概念模型和物理模型设计时 ...

  5. CENTOS6.6下mysql5.6的源码安装

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 1.下载:当前mysql版本到了5.6.28 http://dev. ...

  6. centos7下安装vsftpd

    安装步骤: 创建ftp目录 cd / mkdir ftpfile 创建指定登陆用户并不让他拥有登陆系统的权限(设置指定登陆shell) useradd ftpuser -d /ftpfile/ -s ...

  7. Mybatis学习之道(一)

    本例子为采用的mysql+maven+mybatis构建. 初步学习mybatis: mybatis为一个半自动框架,相对于hibernate来说他更加轻巧,学习成本更低. 1.新建一个maven工程 ...

  8. 第十九章 Django的ORM映射机制

    第十九章 Django的ORM映射机制 第一课 Django获取多个数据以及文件上传 1.获取多选的结果(checkbox,select/option)时: req.POST.getlist('fav ...

  9. 业余草分享 Spring Boot 2.0 正式发布的新特性

    就在昨天Spring Boot2.0.0.RELEASE正式发布,今天早上在发布Spring Boot2.0的时候还出现一个小插曲,将Spring Boot2.0同步到Maven仓库的时候出现了错误, ...

  10. qt Multimedia 模块类如何使用?

    qt 多媒体模块介绍 类名 英文描述 中文描述 QAudioBuffer Represents a collection of audio samples with a specific format ...