题面


二分后用网络流判定
S->人,流量为二分的mid
人->比赛,流量为1
比赛->T,流量为1
输出方案只要判断a就可以了


# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
# define Copy(a, b) memcpy(a, b, sizeof(a))
# define ID(a, b) n * (a - 1) + b
using namespace std;
typedef long long ll;
const int _(2e4 + 10), __(2e5 + 10), INF(2147483647); IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m, a[_], w[__], fst[_], nxt[__], to[__], cnt, S, T, lev[_], cur[_], max_flow, tmp1[_], tmp2[__], tcnt, ans[_];
queue <int> Q; IL void Add(RG int u, RG int v, RG int f){
w[cnt] = f; to[cnt] = v; nxt[cnt] = fst[u]; fst[u] = cnt++;
w[cnt] = 0; to[cnt] = u; nxt[cnt] = fst[v]; fst[v] = cnt++;
} IL int Dfs(RG int u, RG int maxf){
if(u == T) return maxf;
RG int ret = 0;
for(RG int &e = cur[u]; e != -1; e = nxt[e]){
if(lev[to[e]] != lev[u] + 1 || !w[e]) continue;
RG int f = Dfs(to[e], min(w[e], maxf - ret));
ret += f; w[e ^ 1] += f; w[e] -= f;
if(ret == maxf) break;
}
if(!ret) lev[u] = 0;
return ret;
} IL bool Bfs(){
Fill(lev, 0); lev[S] = 1; Q.push(S);
while(!Q.empty()){
RG int u = Q.front(); Q.pop();
for(RG int e = fst[u]; e != -1; e = nxt[e]){
if(lev[to[e]] || !w[e]) continue;
lev[to[e]] = lev[u] + 1;
Q.push(to[e]);
}
}
return lev[T];
} IL void Getans(){
for(RG int i = 1; i <= m; i++)
for(RG int e = fst[i + n]; e != -1; e = nxt[e])
if(to[e] && to[e] <= n && w[e]){
if(to[e] == a[i]) ans[i] = 1;
else ans[i] = 0;
}
} IL bool Check(RG int x){
Copy(fst, tmp1); Copy(w, tmp2); cnt = tcnt;
for(RG int i = 1; i <= n; i++) Add(S, i, x);
for(max_flow = 0; Bfs(); ) Copy(cur, fst), max_flow += Dfs(S, INF);
return max_flow == m;
} int main(RG int argc, RG char* argv[]){
Fill(fst, -1); n = Read(); m = Read(); T = n + m + 1;
for(RG int i = 1, b; i <= m; i++){
a[i] = Read(), b = Read();
Add(a[i], i + n, 1); Add(b, i + n, 1); Add(i + n, T, 1);
}
Copy(tmp1, fst); Copy(tmp2, w); tcnt = cnt;
RG int l = 1, r = m, num = 0;
while(l <= r){
RG int mid = (l + r) >> 1;
if(Check(mid)) r = mid - 1, num = mid, Getans();
else l = mid + 1;
}
printf("%d\n", num);
for(RG int i = 1; i <= m; i++) printf("%d\n", ans[i]);
return 0;
}

Luogu[POI2005]KOS-Dicing的更多相关文章

  1. Luogu 3424 [POI2005]SUM-Fibonacci Sums

    Solution 没有任何算法, 只要会$for$ 就能AC... 我们观察到, 如果有一个位置 的$F_i$ 的系数$b_i$ 为2, 那么只需要把 $b_{i-2}+1,b_{i+1}+1$即可. ...

  2. Luogu 3421 [POI2005]SKO-Knights - Exgcd

    Description 给出一个骑士的 $N$种 中行走的方式 $(a_i, b_i)$, 可以使骑士的坐标$(-a,-b)$或$(+a,+b)$. 我们需要找出 第二个骑士的 两种行走方式 $(c_ ...

  3. luogu P3420 [POI2005]SKA-Piggy Banks

    题目描述 Byteazar the Dragon has NN piggy banks. Each piggy bank can either be opened with its correspon ...

  4. 【BZOJ】【1532】【POI2005】Kos-Dicing

    网络流/二分法 最大值最小……直接做不太好做的时候就可以用二分+判定来搞. 这题我们就也可以二分最大胜场v,那么怎么来判定呢?首先我们发现:每场比赛要么A赢,要么B赢,这一点跟二分图匹配非常类似,那么 ...

  5. Bzoj 1532: [POI2005]Kos-Dicing 二分,网络流

    1532: [POI2005]Kos-Dicing Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1373  Solved: 444[Submit][St ...

  6. BZOJ1532: [POI2005]Kos-Dicing

    1532: [POI2005]Kos-Dicing Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1060  Solved: 321[Submit][St ...

  7. bzoj [POI2005]Kos-Dicing 二分+网络流

    [POI2005]Kos-Dicing Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1835  Solved: 661[Submit][Status][ ...

  8. BZOJ_1532_[POI2005]Kos-Dicing_二分+网络流

    BZOJ_1532_[POI2005]Kos-Dicing_二分+网络流 Description Dicing 是一个两人玩的游戏,这个游戏在Byteotia非常流行. 甚至人们专门成立了这个游戏的一 ...

  9. 2021.11.09 P3426 [POI2005]SZA-Template(KMP+DP)

    2021.11.09 P3426 [POI2005]SZA-Template(KMP+DP) https://www.luogu.com.cn/problem/P3426 题意: 你打算在纸上印一串字 ...

随机推荐

  1. NoSQL性能测试工具YCSB-Running a Workload

    写在前面 目前,在系统设计中引入了越来越多的NoSQL产品,例如Redis/ MongoDB/ HBase等,其中性能指标往往会成为权衡不同NoSQL产品的关键因素.对这些产品在性能表现和产品选择上的 ...

  2. 换行符\r \n LF

    前言:在对照PSR-2规范时,看到文件结尾必须要以Unix LF(linefeed)结尾,不懂查~ 来源于:http://www.cppblog.com/prayer/archive/2009/08/ ...

  3. javascript selenium全套教程发布

    为什么有这个系列 目前javascript生态非常丰富,越来越多的人开始用js去做前端的ui测试了.而selenium是web ui测试的标准解决方案,所以一套js的selenium教程是很有必要的. ...

  4. ubuntu17.10 python3.6 install plugins for AI

    install order: tensorflow-gpu scikit-learn numpy scipy matplotlib tkinter tensorflow-gpu : pip insta ...

  5. iOS中蓝牙的使用

    Core Bluetooth的使用 1,建立中心设备 2,扫描外设(Discover Peripheral) 3,连接外设(Connect Peripheral) 4,扫描外设中的服务和特征(Disc ...

  6. POJ - 1417 并查集+背包

    思路:很简单的种类并查集,利用并查集可以将所有的人分成几个集合,每个集合又分为好人和坏人集合,直接进行背包dp判断有多少种方法可以在取了所有集合并且人数正好凑足p1个好人的方案.dp(i, j)表示前 ...

  7. @EnableAsync @Asnc 以及4种拒绝策略

    根据不同的场景,可以选择不同的拒绝策略,如果任务非常重要,线程池队列满了,可以交由调用者线程同步处理. 如果是一些不太重要日志,可以直接丢弃掉. 如果一些可以丢弃,但是又需要知道被丢弃了,可以使用Th ...

  8. Spring Boot 2.0(三):Spring Boot 开源软件都有哪些?

    2016年 Spring Boot 还没有被广泛使用,在网上查找相关开源软件的时候没有发现几个,到了现在经过2年的发展,很多互联网公司已经将 Spring Boot 搬上了生产,而使用 Spring ...

  9. Centos安装jdk8

    1.下载jdk1.8的tar cd /usr/local/src #切换到该目录下 wget url #下载jdk8的tar包 2.下载完成后解压tar包 tar -zxvf jdk-8u152-li ...

  10. 简化的CDN架构分析

    CDN架构的设计目标是通过复制系统资源(即Web服务器)的方式来获得高性能和高扩展性,为了能确保在海量内容下可以稳定提供高性能的服务.系统资源的复制可以在本地和地理两个尺度上进行.如果是本地复制则响应 ...