[Luogu2973][USACO10HOL]赶小猪
sol
首先解释一波这道题无重边无自环
设\(f_i\)表示\(i\)点上面的答案。
方程
\]
\(f_1\)的那个方程加一个\(\frac PQ\)常数项
code
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
using namespace std;
const int N = 305;
int gi()
{
int x=0,w=1;char ch=getchar();
while ((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if (ch=='-') w=0,ch=getchar();
while (ch>='0'&&ch<='9') x=(x<<3)+(x<<1)+ch-'0',ch=getchar();
return w?x:-x;
}
struct edge{int to,next;}a[N*N<<1];
int n,m,head[N],cnt;
double p,f[N][N],du[N],sol[N];
int main()
{
n=gi();m=gi();
p=(double)gi()/(double)gi();
for (int i=1,u,v;i<=m;i++)
{
u=gi();v=gi();
a[++cnt]=(edge){v,head[u]};head[u]=cnt;
a[++cnt]=(edge){u,head[v]};head[v]=cnt;
du[u]+=1.0;du[v]+=1.0;
}
f[1][n+1]=p;
for (int u=1;u<=n;u++)
{
f[u][u]=1;
for (int e=head[u];e;e=a[e].next)
f[u][a[e].to]-=(1-p)/du[a[e].to];
}
for (int i=1;i<=n;i++)
for (int j=i+1;j<=n;j++)
for (int k=n+1;k>=i;k--)
f[j][k]-=f[i][k]*f[j][i]/f[i][i];
for (int i=n;i;i--)
{
sol[i]=f[i][n+1];
for (int j=n;j>i;j--)
sol[i]-=f[i][j]*sol[j];
sol[i]/=f[i][i];
}
for (int i=1;i<=n;i++) printf("%.9lf\n",sol[i]);
return 0;
}
[Luogu2973][USACO10HOL]赶小猪的更多相关文章
- [Luogu2973][USACO10HOL]赶小猪Driving Out the Piggi…
题目描述 The Cows have constructed a randomized stink bomb for the purpose of driving away the Piggies. ...
- Luogu2973:[USACO10HOL]赶小猪
题面 Luogu Sol 设\(f[i]\)表示炸弹到\(i\)不爆炸的期望 高斯消元即可 另外,题目中的概率\(p/q\)实际上为\(1-p/q\) 还有,谁能告诉我不加\(EPS\),为什么会输出 ...
- 洛谷2973 [USACO10HOL]赶小猪Driving Out the Piggi… 概率 高斯消元
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - 洛谷2973 题意概括 有N个城市,M条双向道路组成的地图,城市标号为1到N.“西瓜炸弹”放在1号城市,保证城 ...
- 洛谷P2973 [USACO10HOL]赶小猪(高斯消元 期望)
题意 题目链接 Sol 设\(f[i]\)表示炸弹到达\(i\)这个点的概率,转移的时候考虑从哪个点转移而来 \(f[i] = \sum_{\frac{f(j) * (1 - \frac{p}{q}) ...
- 洛谷P2973 [USACO10HOL]赶小猪
https://www.luogu.org/problemnew/show/P2973 dp一遍,\(f_i=\sum_{edge(i,j)}\frac{f_j\times(1-\frac{P}{Q} ...
- Luogu P2973 [USACO10HOL]赶小猪Driving Out the Piggi 后效性DP
有后效性的DP:$f[u]$表示到$u$的期望次数,$f[u]=\Sigma_{(u,v)} (1-\frac{p}{q})*f[v]*deg[v]$,最后答案就是$f[u]*p/q$ 刚开始$f[1 ...
- P2973 [USACO10HOL]赶小猪
跟那个某省省选题(具体忘了)游走差不多... 把边搞到点上然后按套路Gauss即可 貌似有人说卡精度,$eps≤1e-13$,然而我$1e-12$也可以过... 代码: #include<cst ...
- [USACO10HOL]赶小猪
嘟嘟嘟 这题和某一类概率题一样,大体思路都是高斯消元解方程. 不过关键还是状态得想明白.刚开始令\(f[i]\)表示炸弹在点\(i\)爆的概率,然后发现这东西根本无法转移(或者说概率本来就是\(\fr ...
- 小猪cms微信二次开发之怎样分页
$db=D('Classify'); $zid=$db->where(array('id'=>$this->_GET('fid'),'token'=>$this->tok ...
随机推荐
- Date和long类型互转
1.java.util.Date类型转换成long类型 java.util.Date dt = new Date(); System.out.println(dt.toString()); //jav ...
- ConcurrenHashMap源码分析(二)
本篇博客的目录: 一:put方法源码 二:get方法源码 三:rehash的过程 四:总结 一:put方法的源码 首先,我们来看一下segment内部类中put方法的源码,这个方法它是segment片 ...
- FastStone Capture的使用
FastStone Capture的使用 FastStone Capture是一款精简而优秀的图像处理软件,在工作中会经常用到.我在本地安装了FastStone Capture 8.4版本 (提取码: ...
- php实现的短网址算法分享
这篇文章主要介绍了php实现的短网址算法,理论上支持1,073,741,824个短网址,个人使用足够了,需要的朋友可以参考下 每个网址用6个字符代替,(6^32) 最多可以拥有1,073,741,82 ...
- appium滑动操作(向上、向下、向左、向右)
appium滑动操作(向上滑动.向下滑动.向左滑动.向右滑动) 测试app:今日头条apk 测试设备:夜游神模拟器 代码如下: 先用x.y获取当前的width和height def getSize() ...
- 基于JDK1.8的ArrayList剖析
前言 本文是基于JDK1.8的ArrayList进行分析的.本文大概从以下几个方面来分析ArrayList这个数据结构 构造方法 add方法 扩容 remove方法 (一)构造方法 /** * Con ...
- Flask從入門到入土(二)——請求响应與Flask扩展
———————————————————————————————————————————————————————————— 一.程序和請求上下文 Flask從客戶端收到請求時,要讓視圖函數能訪問一些對象 ...
- codeforce-748A
简单判断一下就行. AC代码: #include<cstdio> int main(){ int n,m,k; while(scanf("%d%d%d",&n, ...
- HDU - 1847 巴什博弈
思路: 0 1 2 3 4 5 6 7 8 9 10 11 12 P N N P N N P N N P N N P 不难发现:当n为三的倍数时,KIKI ...
- C语言老司机学Python (四)
字符串格式化: 可以使用类似c语言中sprintf函数的方法进行格式化,但是函数名称是print() 如:print('常量 PI 的值近似为:%5.3f.' % var_PI) 注意var_PI ...