• 背景:

一般情况下,经常会遇到一个单线程程序时执行对CPU,MEMORY,IO利用率上不来,且速度慢下问题;那么,怎么解决这些问题呢?

据我个人经验来说有以下两种方式:

1、并行、多线程(Parallel、Task、ThreadPool)

2、多进程MultipleProcess

恰好工作中又一次遇到单线程程序性能低的问题,本次我主要想尝试使用ThreadPool来实现多线程,并且在实现多线程任务同步结束。

  • ThreadPool线程同步结束示例一:

一个ManualResetEvent结合Interlocked来实现线程同步结束。

  static void Main(string[] args)
{
using (ManualResetEvent finish = new ManualResetEvent(false))
{
int maxThreadCount = ;
for (var i = ; i < ; i++) {
ThreadPool.QueueUserWorkItem((Object state)=> {
Console.WriteLine("task:{0}",state); // 以原子操作的形式递减指定变量的值并存储结果。
if (Interlocked.Decrement(ref maxThreadCount) == ) {
// 将事件状态设置为有信号,从而允许一个或多个等待线程继续执行。
finish.Set();
}
}, i);
} // 阻止当前线程,直到当前 System.Threading.WaitHandle 收到信号。
finish.WaitOne();
} Console.WriteLine("Complete!");
Console.ReadKey();

上边的代码是可行性,当系统线程数超过系统允许最大数时,线程会被在线程池中排队等待。

  • ThreadPool线程同步结束示例二:

ManualResetEvent集合(每一个线程由集合中的唯一一个ManualResetEvent对象来实现线程的同步跟踪)结合WaitHandle.WaitAll(ManualResetEvent集合)来实现线程同步结束。

using System;
using System.Collections.Generic;
using System.IO;
using System.Linq;
using System.Text;
using System.Threading; namespace ThreadPoolTest
{
class MyTask
{
private ManualResetEvent finish = null;
public MyTask(ManualResetEvent finish)
{
this.finish = finish;
} public void MyTaskThreadPoolCallback(Object state)
{
Console.WriteLine("task:{0}", state); // 将事件状态设置为有信号,从而允许一个或多个等待线程继续执行。
this.finish.Set();
}
} class Program
{
static void Main(string[] args)
{
const int maxThreadCount = ;
ManualResetEvent[] finishItems = new ManualResetEvent[maxThreadCount];
MyTask[] myTaskItems = new MyTask[maxThreadCount]
;
for (var i = ; i < maxThreadCount; i++)
{
finishItems[i] = new ManualResetEvent(false); MyTask myTask = new MyTask(finishItems[i]);
myTaskItems[i] = myTask; ThreadPool.QueueUserWorkItem(myTask.MyTaskThreadPoolCallback, i);
} // 等待指定数组中的所有元素都收到信号。
WaitHandle.WaitAll(finishItems); Console.WriteLine("Complete!");
Console.ReadKey();
} }
}

尽管这种想法不错,但是存在一些问题:比如ManualResetEvent集合数量不允许超过系统允许的最大数量,我的计算机系统允许的最大数量是64,当我把配置超过64时(const int maxThreadCount = 65;),就会抛出异常。

  • 实现多线程时,需要注意事项:

可是一般情况下遇到这种业务的情况下,只要修改多线程,必然会遇到某个对象不允许被多个线程操作的问题。

比如:

1、多个线程同时向一个文件中写入内容,这种情况一般使用锁来包成被访问对象的安全性。比如:互斥锁(lock、Mutex)、读写锁(ReadWriteLock)、Monitor、Semaphore(信号灯)、Interlocked(内存共享)等。

2、多个线程同时修改一个非线程安全集合对象(List,Collection,Dictionary,Bag,Queue,Stack,ArrayList,Array,HashTable等)时,往往会抛出异常。针对这种情况,需要使用命名空间System.Collections.Concurrent.*下支持线程安全的集合、字典、队列、栈等对象来替代。

  • 业务场景:

我们需要对一个多行文本文件进行解析,根据具体地址解析其中的经纬度信息。如果解析过程中解析失败的行,需要记录到一个_error.txt;解析成功的记录行,记录到_result.txt。使用单线程分析过程中已经遇到了性能低问题,需求解决方案是使用ThreadPool技术。

  • 业务实现:
         private static int maxThreadCount = ;
private static int fakeMaxThreadCount = int.MaxValue;
private static ManualResetEvent finish = new ManualResetEvent(false);
private static object errorLocker = new object();
private static object resultLocker = new object();
private static object maxThreadCountLcker = new object(); public void ParserFile(string filePath)
{
using (StreamWriter writerError = new StreamWriter(filePath + "_error"))
{
using (StreamWriter writerResult = new StreamWriter(filePath + "_result"))
{
finish = new ManualResetEvent(false);
using (StreamReader reader = new StreamReader(filePath))
{
string line = reader.ReadLine();
while (line != null)
{
maxThreadCount++;
ThreadPool.QueueUserWorkItem(DoWork, new object[] { line, writerError, writerResult
}); line = reader.ReadLine();
}
} maxThreadCount++;
lock (maxThreadCountLcker)
{
fakeMaxThreadCount = maxThreadCount;
} ThreadPool.QueueUserWorkItem(DoWork, new object[] { }); finish.WaitOne();
finish.Close();
finish.Dispose();
}
}
} private void DoWork(object state)
{
object[] objectItem = state as object[];
if (objectItem.Length != )
{
if (Interlocked.Decrement(ref fakeMaxThreadCount) == )
{
finish.Set();
}
return;
}
string line = objectItem[].ToString();
StreamWriter writerError = objectItem[] as StreamWriter;
StreamWriter writerResult = objectItem[] as StreamWriter; try
{
string[] fields = line.Split(new char[] { '|' }); string imsi = fields[];
string city = fields[];
string county = fields[];
string address = fields[]; // http://restapi.amap.com/v3/geocode/geo?key=7de8697669288fc848e12a08f58d995e&s=rsv3&city=**市&address=**省**市**区**路23号
string uri = " http://restapi.amap.com/v3/geocode/geo";
string parameter = string.Format("key={0}&s={1}&city={2}&address={3}", "7de8697669288fc848e12a08f58d995e", "rsv3", "**(市名称)", address); // {"status":"1","info":"OK","infocode":"10000","count":"1","geocodes":[{"formatted_address":"***省**市**区***路|23号","province":"***","citycode":"***","city":"***市","district":"***区","township":[],"neighborhood":{"name":[],"type":[]},"building":{"name":[],"type":[]},"adcode":"330105","street":[],"number":[],"location":"120.151367,30.362293","level":"门牌号"}]}
string result = GetRequesetContext(uri, parameter);
if (string.IsNullOrEmpty(result) || result.IndexOf("location") == -)
{
lock (errorLocker)
{
writerError.WriteLine(result);
}
}
else
{
int indexCount = ;
List<string> lnglatItems = new List<string>();
foreach (string resultItem in result.Split(new string[] { "\",\"", ",\"" }, StringSplitOptions.RemoveEmptyEntries))
{
if (resultItem.IndexOf("location") != -)
{
indexCount++;
lnglatItems.Add(resultItem.Split(new char[] { ':' })[].Replace("\"", string.Empty));
}
}
if (indexCount == )
{
lock (resultLocker)
{
writerResult.WriteLine(address + "|" + lnglatItems[] + "|" + imsi);
}
}
else
{
lock (resultLocker)
{
writerError.WriteLine(address + "|" + string.Join(",", lnglatItems) + "|" + imsi);
}
}
}
}
catch (Exception ex)
{
logger.Error("{0}\r\n{1}", ex.Message, ex.StackTrace);
lock (errorLocker)
{
writerError.WriteLine(line);
}
}
finally
{
lock (maxThreadCountLcker)
{
if (Interlocked.Decrement(ref fakeMaxThreadCount) == )
{
finish.Set();
}
}
}
}

 备注:

关于ThreadPool线程池内最大线程控制函数:SetMaxThreads 设置可以同时处于活动状态的线程池的请求数目。 所有大于此数目的请求将保持排队状态,直到线程池线程变为可用。

[SecurityPermissionAttribute(SecurityAction.Demand, ControlThread = true)]
public static bool SetMaxThreads(
int workerThreads,
int completionPortThreads
)

workerThreads:线程池中辅助线程的最大数目。

completionPortThreads:线程池中异步 I/O 线程的最大数目。

但是,需要注意事项:

不能将辅助线程的数目或 I/O 完成线程的数目设置为小于计算机的处理器数目。

如果承载了公共语言运行时,例如由 Internet 信息服务 (IIS) 或 SQL Server 承载,主机可能会限制或禁止更改线程池大小。

更改线程池中的最大线程数时需谨慎。 虽然这类更改可能对您的代码有益,但对您使用的代码库可能会有不利的影响。

将线程池大小设置得太大可能导致性能问题。 如果同时执行的线程太多,任务切换开销就成为影响性能的一个主要因素。

c#:ThreadPool实现并行分析,并实现线程同步结束的更多相关文章

  1. 分析.Net里线程同步机制

    我 们知道并行编程模型两种:一种是基于消息式的,第二种是基于共享内存式的. 前段时间项目中遇到了第二种 使用多线程开发并行程序共享资源的问题 ,今天以实际案例出发对.net里的共享内存式的线程同步机制 ...

  2. Python并行编程(五):线程同步之信号量

    1.基本概念 信号量是由操作系统管理的一种抽象数据类型,用于在多线程中同步对共享资源的使用.本质上说,信号量是一个内部数据,用于标明当前的共享资源可以有多少并发读取. 同样在threading中,信号 ...

  3. Python并行编程(三):线程同步之Lock

    1.基础概念 当两个或以上对共享内存操作的并发线程中,如果有一个改变数据,又没有同步机制的条件下,就会产生竞争条件,可能会导致执行无效代码.bug等异常行为. 竞争条件最简单的解决方法是使用锁.锁的操 ...

  4. Python并行编程(七):线程同步之事件

    1.基本概念 事件是线程之间用于通讯的对象.有的线程等待信号,有的线程发出信号.基本上事件对象都会维护一个内部变量,可以通过set方法设置为true,也可以通过clear方法设置为false.wait ...

  5. Python并行编程(六):线程同步之条件

    1.基本概念 条件指的是应用程序状态的改变.其中某些线程在等待某一条件发生,其 他线程会在该条件发生的时候进行通知,一旦条件发生,线程会拿到共享资源的唯一权限. 2.示例代码 from threadi ...

  6. Python并行编程(四):线程同步之RLock

    1.基本概念 如果想让只有拿到锁的线程才能释放该锁,那么应该使用RLock()对象.当需要在类外面保证线程安全,又要在类内使用同样方法的时候RLock()就很使用. RLock叫做Reentrant ...

  7. C#并行编程-线程同步原语

    菜鸟学习并行编程,参考<C#并行编程高级教程.PDF>,如有错误,欢迎指正. 目录 C#并行编程-相关概念 C#并行编程-Parallel C#并行编程-Task C#并行编程-并发集合 ...

  8. Python GUI之tkinter窗口视窗教程大集合(看这篇就够了) JAVA日志的前世今生 .NET MVC采用SignalR更新在线用户数 C#多线程编程系列(五)- 使用任务并行库 C#多线程编程系列(三)- 线程同步 C#多线程编程系列(二)- 线程基础 C#多线程编程系列(一)- 简介

    Python GUI之tkinter窗口视窗教程大集合(看这篇就够了) 一.前言 由于本篇文章较长,所以下面给出内容目录方便跳转阅读,当然也可以用博客页面最右侧的文章目录导航栏进行跳转查阅. 一.前言 ...

  9. Java线程池ThreadPoolExecutor使用和分析(三) - 终止线程池原理

    相关文章目录: Java线程池ThreadPoolExecutor使用和分析(一) Java线程池ThreadPoolExecutor使用和分析(二) - execute()原理 Java线程池Thr ...

随机推荐

  1. 来自后端的突袭? --浅尝最新开源的C# Web引擎 Blazor

    在今年年初, 恰逢新春佳节临近的时候. 微软给全球的C#开发者们, 着实的送上了一分惊喜. 微软正式开源Blazor ,将.NET带回到浏览器. 这个小惊喜, 迅速的在dotnet开发者中间传开了. ...

  2. Java面向对象特性--多态

    Java是一种面向对象的编程语言,面向对象的三大特性就是继承,封装,多态.下面细细说一说多态. 多态的定义:一个事物的多种形态,指允许不同类的对象对同一消息做出响应.即同一消息可以根据发送对象的不同而 ...

  3. 设计模式之观察者(OBSERVER)模式

    定义 定义对象间的一种一对多的依赖关系,当一个对象的状态发生改变时,所有依赖于它的对象都得到通知并被自动更新.  Observer模式描述了如何建立这种关系.这一模式中的关键对象是目标(subject ...

  4. Spring AOP: 织入的顺序

    spring AOP 采用和 AspectJ 一样的优先顺序来织入增强处理:在进入连接点时,高优先级的增强处理将先被织入:在退出连接点时,高优先级的增强处理会后被织入. 当不同的切面里的两个增强处理需 ...

  5. linux --> ubuntu和mac通过samba共享

    ubuntu和mac通过samba共享 如果想快速配置,直接跳到第五步. 一.安装smb 执行下列命令 sudo apt-get install samba sudo apt-get install ...

  6. 网络通信 --> 消息队列

    消息队列 消息队列提供了一种从一个进程向另一个进程发送一个数据块的方法.可以通过发送消息来避免命名管道的同步和阻塞问题.但是消息队列与命名管道一样,每个数据块都有一个最大长度的限制. Linux用宏M ...

  7. [react 基础篇]——React.createClass()方法同时创建多个组件类

    react 组件 React 允许将代码封装成组件(component),然后像插入普通 HTML 标签一样,在网页中插入这个组件.React.createClass 方法就用于生成一个组件类 一个组 ...

  8. Object类-----java

    Object类是所有类的父类,如果一个类没有使用extends关键字明确标识继承另一个类,那么这类默认继承object类 Object类中的方法,适合所有子类. 1 toString()方法在Obje ...

  9. C#简单入门

    公司给的一个小的practice C# vs2017 Stage 1 (cmd)1. Parse the dll (reflection)2. Write all the public methods ...

  10. 凡事预则立(Beta)

    听说--凡事预则立 吸取之前alpha冲刺的经验教训,也为了这次的beta冲刺可以更好更顺利地进行,更是为了迎接我们的新成员玮诗.我们开了一次组内会议,进行beta冲刺的规划. 上一张我们的合照: 具 ...