作为支持向量机系列的基本篇的最后一篇文章,我在这里打算简单地介绍一下用于优化 dual 问题的 Sequential Minimal Optimization (SMO) 方法。确确实实只是简单介绍一下,原因主要有两个:第一这类优化算法,特别是牵涉到实现细节的时候,干巴巴地讲算法不太好玩,有时候讲出来每个人实现得结果还不一样,提一下方法,再结合实际的实现代码的话,应该会更加明了,而且也能看出理论和实践之间的差别;另外(其实这个是主要原因)我自己对这一块也确实不太懂。 

先回忆一下我们之前得出的要求解的 dual 问题:

maxαs.t.,∑i=1nαi–12∑i,j=1nαiαjyiyjκ(xi,xj)0≤αi≤C,i=1,…,n∑i=1nαiyi=0

对于变量 α 来说,这是一个 quadratic 函数。通常对于优化问题,我们没有办法的时候就会想到最笨的办法——Gradient Descent ,也就是梯度下降。注意我们这里的问题是要求最大值,只要在前面加上一个负号就可以转化为求最小值,所以 Gradient Descent 和 Gradient Ascend 并没有什么本质的区别,其基本思想直观上来说就是:梯度是函数值增幅最大的方向,因此只要沿着梯度的反方向走,就能使得函数值减小得越大,从而期望迅速达到最小值。当然普通的 Gradient Descent 并不能保证达到最小值,因为很有可能陷入一个局部极小值。不过对于 quadratic 问题,极值只有一个,所以是没有局部极值的问题。

另外还有一种叫做 Coordinate Descend 的变种,它每次只选择一个维度,例如 α=(α1,…,αn) ,它每次选取 αi 为变量,而将 α1,…,αi−1,αi+1,…,αn 都看成是常量,从而原始的问题在这一步变成一个一元函数,然后针对这个一元函数求最小值,如此反复轮换不同的维度进行迭代。Coordinate Descend 的主要用处在于那些原本很复杂,但是如果只限制在一维的情况下则变得很简单甚至可以直接求极值的情况,例如我们这里的问题,暂且不管约束条件,如果只看目标函数的话,当 α 只有一个分量是变量的时候,这就是一个普通的一元二次函数的极值问题,初中生也会做,带入公式即可。

然而这里还有一个问题就是约束条件的存在,其实如果没有约束条件的话,本身就是一个多元的 quadratic 问题,也是很好求解的。但是有了约束条件,结果让 Coordinate Descend 变得很尴尬了:比如我们假设 α1 是变量,而 α2,…,αn 是固定值的话,那么其实没有什么好优化的了,直接根据第二个约束条件 ∑ni=1αiyi=0 ,α1 的值立即就可以定下来——事实上,迭代每个坐标维度,最后发现优化根本进行不下去,因为迭代了一轮之后会发现根本没有任何进展,一切都停留在初始值。

所以 Sequential Minimal Optimization (SMO) 一次选取了两个坐标维度来进行优化。例如(不失一般性),我们假设现在选取 α1 和 α2 为变量,其余为常量,则根据约束条件我们有:

∑i=1nαiyi=0⇒α2=1y2(∑i=3nαiyi−α1y1)≜y2(K−α1y1)

其中那个从 3 到 n 的作和由于都是常量,我们统一记作 K ,然后由于 y∈{−1,+1} ,所以 y2 和 1/y2 是完全一样的,所以可以拿到分子上来。将这个式子带入原来的目标函数中,可以消去 α2 ,从而变成一个一元二次函数,具体展开的形式我就不写了,总之现在变成了一个非常简单的问题:带区间约束的一元二次函数极值问题——这个也是初中就学过求解方法的。唯一需要注意一点的就是这里的约束条件,一个就是 α1 本身需要满足 0≤α1≤C ,然后由于 α2 也要满足同样的约束,即:

0≤y2(K−α1y1)≤C

也可以得到 α1 的一个可行区间,同 [0,C] 交集即可得到最终的可行区间。这个问题可以从图中得到一个直观的感觉。原本关于 α1 和 α2 的区间限制构成途中绿色的的方块,而另一个约束条件 y1α1+y2α2=K 实际上表示一条直线,两个集合的交集即是途中红颜色的线段,投影到 α1 轴上所对应的区间即是 α1 的取值范围,在这个区间内求二次函数的最大值即可完成 SMO 的一步迭代。

同 Coordinate Descent 一样,SMO 也会选取不同的两个 coordinate 维度进行优化,可以看出由于每一个迭代步骤实际上是一个可以直接求解的一元二次函数极值问题,所以求解非常高效。此外,SMO 也并不是依次或者随机地选取两个坐标维度,而是有一些启发式的策略来选取最优的两个坐标维度,具体的选取方法(和其他的一些细节),可以参见 John C. Platt 的那篇论文 Fast Training of Support Vector Machines Using Sequential Minimal Optimization 。关于 SMO ,我就不再多说了。如果你对研究实际的代码比较感兴趣,可以去看 LibSVM 的实现,当然,它那个也许已经不是原来版本的 SMO 了,因为本来 SVM 的优化就是一个有许多研究工作的领域,在那些主要的优化方法之上,也有各种改进的办法或者全新的算法提出来。

除了 LibSVM 之外,另外一个流行的实现 SVMlight 似乎是用了另一种优化方法,具体可以参考一下它相关的论文 Making large-Scale SVM Learning Practical 。

此外,虽然我们从 dual 问题的推导中得出了许多 SVM 的优良性质,但是 SVM 的数值优化(即使是非线性的版本)其实并不一定需要转化为 dual 问题来完成的,具体做法我并不清楚,不过这方面的文章也不少,比如 2007 年 Neural Computation 的一篇 Training a support vector machine in the primal 。如果感兴趣可以参考一下。 

(转载)SVM-基础(五)的更多相关文章

  1. 转:机器学习中的算法(2)-支持向量机(SVM)基础

    机器学习中的算法(2)-支持向量机(SVM)基础 转:http://www.cnblogs.com/LeftNotEasy/archive/2011/05/02/basic-of-svm.html 版 ...

  2. Bootstrap <基础五>表格

    Bootstrap 提供了一个清晰的创建表格的布局.下表列出了 Bootstrap 支持的一些表格元素: 标签 描述 <table> 为表格添加基础样式. <thead> 表格 ...

  3. C#_02.14_基础五_.NET类

    C#_02.14_基础五_.NET类 一.类实例: 我们前面说过类是一个模板,我们通过类创建一个又一个的实例,通常情况下类当中的变量是每一个实例都各有一份的,互相不影响,而静态字段是除外的,静态字段是 ...

  4. [转]C# ListView 单击标题实现排序(在转载的基础上有所完善)

    using System; using System.Collections; using System.Windows.Forms; //在转载的基础上有所完善 namespace TDRFacto ...

  5. day 70 Django基础五之django模型层(二)多表操作

    Django基础五之django模型层(二)多表操作   本节目录 一 创建模型 二 添加表记录 三 基于对象的跨表查询 四 基于双下划线的跨表查询 五 聚合查询.分组查询.F查询和Q查询 六 ORM ...

  6. day 69 Django基础五之django模型层(一)单表操作

    Django基础五之django模型层(一)单表操作   本节目录 一 ORM简介 二 单表操作 三 章节作业 四 xxx 一 ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它实现 ...

  7. day 57 Django基础五之django模型层之关联管理器

    Django基础五之django模型层之关联管理器   class RelatedManager "关联管理器"是在一对多或者多对多的关联上下文中使用的管理器.它存在于下面两种情况 ...

  8. day 56 Django基础五之django模型层(二)多表操作

    Django基础五之django模型层(二)多表操作   本节目录 一 创建模型 二 添加表记录 三 基于对象的跨表查询 四 基于双下划线的跨表查询 五 聚合查询.分组查询.F查询和Q查询 六 ORM ...

  9. day 55 Django基础五之django模型层(一)单表操作

      Django基础五之django模型层(一)单表操作   本节目录 一 ORM简介 二 单表操作 三 章节作业 四 xxx 一 ORM简介 MVC或者MVC框架中包括一个重要的部分,就是ORM,它 ...

  10. Django基础五之Ajax

    Django基础五之Ajax 目录 Django基础五之Ajax 1. Ajax介绍 2. Ajax前后端传值 2.1 方法一HttpResponse直接返回 2.2 方法二使用Json格式返回 2. ...

随机推荐

  1. java里程碑之泛型--泛型基本语法

    1,java7提供的泛型菱形语法 在java7之前,如果使用带泛型的接口和类定义变量初始化对象的时候,构造器后面也必须带上泛型,这有点恶心的.以前我在公司一直使用的java6,所以我也已经习惯了这种写 ...

  2. 机器学习-GBDT和XGboost

    参考: 陈天奇slides :   https://homes.cs.washington.edu/~tqchen/pdf/BoostedTree.pdf Friedman GBDT 论文:  htt ...

  3. 壮美大山包-2017中国大山包国际超百公里ITRA积分赛赛记

    2017年4月份用时28个多小时跑完江南100,付出的代价是双脚多达8个以上的水泡.所以接下来的4月29日的环汶川越野赛果断的从60公里换到了30公里组,慢悠悠的完成了. 虽然在赛道上一度想再也不参加 ...

  4. JSP内置对象值out对象及其它的一些常见方法

    out对象: out对象是jspWriter类的实例,是向客户端输出内容常用的对象. 常用方法如下: void println() 向客户端打印字符串 void clear() 清除缓冲区的内容,如果 ...

  5. angular js $post,$get请求传值

    困扰了我好几天的问题!!! 刚开始学play框架,在向后台传值时,一直不成功! 当你用$POST传递一个参数时: HTML: <button ng-click=test()>测试</ ...

  6. 快速傅里叶变换 & 快速数论变换

    快速傅里叶变换 & 快速数论变换 [update 3.29.2017] 前言 2月10日初学,记得那时好像是正月十五放假那一天 当时写了手写版的笔记 过去近50天差不多忘光了,于是复习一下,具 ...

  7. HDU 3595 GG and MM [Every-SG]

    传送门 题意: 两个数$x,y$,一个人的决策为让大数减去小数的任意倍数(结果不能为负),出现0的人胜 一堆这样的游戏同时玩 Every-SG 游戏规定,对于还没有结束的单一游戏,游戏者必须对该游戏进 ...

  8. CF 375C Circling Round Treasures [DP(spfa) 状压 射线法]

    C - Circling Round Treasures 题意: 在一个$n*m$的地图上,有一些障碍,还有a个宝箱和b个炸弹.你从(sx,sy)出发,走四连通的格子.你需要走一条闭合的路径,可以自交 ...

  9. IntelliJ IDEA使用心得之插件篇

    今天和大家分享下插件的安装方法,顺便推荐几个非常好用的插件. 1.安装插件 在工具栏中,点击进入IDE设置界面. 插件仓库界面: 值得注意的是,每次安装/卸载插件后,需要重启IDE. 2.好用的插件 ...

  10. JSON入门看这一篇就够了

    什么是JSON JSON:JavaScript Object Notation [JavaScript 对象表示法] JSON 是存储和交换文本信息的语法.类似 XML. JSON采用完全独立于任何程 ...