package java.util;

 import java.io.*;
import java.util.concurrent.ThreadLocalRandom;
import java.util.function.BiConsumer;
import java.util.function.Function;
import java.util.function.BiFunction; import sun.misc.SharedSecrets; /**
* Hashtable存储的内容是键值对(key-value)映射,其底层实现是一个Entry数组+链表;
* Hashtable和HashMap一样也是散列表,存储元素也是键值对;
* HashMap允许key和value都为null,而Hashtable都不能为null,Hashtable中的映射不是有序的;
* Hashtable和HashMap扩容的方法不一样,Hashtable中数组默认大小11,扩容方式是 old*2+1。
* HashMap中数组的默认大小是16,而且一定是2的指数,增加为原来的2倍。
* Hashtable继承于Dictionary类(Dictionary类声明了操作键值对的接口方法),实现Map接口(定义键值对接口);
* Hashtable大部分类用synchronized修饰,证明Hashtable是线程安全的。
*/
public class Hashtable<K, V>
extends Dictionary<K, V>
implements Map<K, V>, Cloneable, java.io.Serializable { /**
* 键值对/Entry数组,每个Entry本质上是一个单向链表的表头
*/
private transient Entry<?, ?>[] table; /**
* 当前表中的Entry数量,如果超过了阈值,就会扩容,即调用rehash方法
*/
private transient int count; /**
* rehash阈值
*
* @serial
*/
private int threshold; /**
* 负载因子
*
* @serial
*/
private float loadFactor; /**
* 用来实现"fail-fast"机制的(也就是快速失败)。所谓快速失败就是在并发集合中,其进行
* 迭代操作时,若有其他线程对其进行结构性的修改,这时迭代器会立马感知到,并且立即抛出
* ConcurrentModificationException异常,而不是等到迭代完成之后才告诉你(你已经出错了)。
*/
private transient int modCount = 0; /**
* 版本序列号
*/
private static final long serialVersionUID = 1421746759512286392L; /**
* 指定容量大小和加载因子的构造函数
*
* @param initialCapacity 容量大小
* @param loadFactor 负载因子
* @throws IllegalArgumentException if the initial capacity is less
* than zero, or if the load factor is nonpositive.
*/
public Hashtable(int initialCapacity, float loadFactor) {
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: " +
initialCapacity);
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new IllegalArgumentException("Illegal Load: " + loadFactor); if (initialCapacity == 0)
initialCapacity = 1;
this.loadFactor = loadFactor;
table = new Entry<?, ?>[initialCapacity];
threshold = (int) Math.min(initialCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
} /**
* 指定容量大小的构造函数
*
* @param initialCapacity 容量大小
* @throws IllegalArgumentException if the initial capacity is less
* than zero.
*/
public Hashtable(int initialCapacity) {
this(initialCapacity, 0.75f);
} /**
* 默认构造函数
*/
public Hashtable() {
// 默认构造函数,指定的容量大小是11;加载因子是0.75
this(11, 0.75f);
} /**
* 包含子Map的构造函数
*
* @param t the map whose mappings are to be placed in this map.
* @throws NullPointerException if the specified map is null.
* @since 1.2
*/
public Hashtable(Map<? extends K, ? extends V> t) {
this(Math.max(2 * t.size(), 11), 0.75f);
putAll(t);
} /**
* 返回容量大小
*
* @return the number of keys in this hashtable.
*/
public synchronized int size() {
return count;
} /**
* 判空
*
* @return <code>true</code> if this hashtable maps no keys to values;
* <code>false</code> otherwise.
*/
public synchronized boolean isEmpty() {
return count == 0;
} /**
* 返回所有key的枚举对象
*
* @return an enumeration of the keys in this hashtable.
* @see Enumeration
* @see #elements()
* @see #keySet()
* @see Map
*/
public synchronized Enumeration<K> keys() {
return this.<K>getEnumeration(KEYS);
} /**
* 返回所有value的枚举对象
*
* @return an enumeration of the values in this hashtable.
* @see java.util.Enumeration
* @see #keys()
* @see #values()
* @see Map
*/
public synchronized Enumeration<V> elements() {
return this.<V>getEnumeration(VALUES);
} /**
* 判断是否含有该value的键值对,在Hashtable中hashCode相同的Entry用链表组织,hashCode不同的存储在Entry数组table中;
*
* @param value a value to search for
* @return <code>true</code> if and only if some key maps to the
* <code>value</code> argument in this hashtable as
* determined by the <tt>equals</tt> method;
* <code>false</code> otherwise.
* @throws NullPointerException if the value is <code>null</code>
*/
public synchronized boolean contains(Object value) {
if (value == null) {
throw new NullPointerException();
} Entry<?, ?> tab[] = table;
// 查找:遍历所有Entry链表
for (int i = tab.length; i-- > 0; ) {
for (Entry<?, ?> e = tab[i]; e != null; e = e.next) {
if (e.value.equals(value)) {
return true;
}
}
}
return false;
} /**
* 判断是否包含value值对象
*
* @param value value whose presence in this hashtable is to be tested
* @return <tt>true</tt> if this map maps one or more keys to the
* specified value
* @throws NullPointerException if the value is <code>null</code>
* @since 1.2
*/
public boolean containsValue(Object value) {
return contains(value);
} /**
* 判断是否包含key键值对象
*
* @param key possible key
* @return <code>true</code> if and only if the specified object
* is a key in this hashtable, as determined by the
* <tt>equals</tt> method; <code>false</code> otherwise.
* @throws NullPointerException if the key is <code>null</code>
* @see #contains(Object)
*/
public synchronized boolean containsKey(Object key) {
Entry<?, ?> tab[] = table;
int hash = key.hashCode();
/**
* 计算index, % tab.length防止数组越界
* index表示key对应entry所在链表表头
*/
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<?, ?> e = tab[index]; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return true;
}
}
return false;
} /**
* 根据指定key查找对应value,查找原理与containsKey相同,查找成功返回value,否则返回null
*
* @param key the key whose associated value is to be returned
* @return the value to which the specified key is mapped, or
* {@code null} if this map contains no mapping for the key
* @throws NullPointerException if the specified key is null
* @see #put(Object, Object)
*/
@SuppressWarnings("unchecked")
public synchronized V get(Object key) {
Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<?, ?> e = tab[index]; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
return (V) e.value;
}
}
return null;
} /**
* 规定的最大数组容量
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8; /**
* 当Hashtable中键值对总数超过阈值(容量*装载因子)后,内部自动调用rehash()增加容量,重新计算每个键值对的hashCode
* int newCapacity = (oldCapacity << 1) + 1计算新容量 = 2 * 旧容量 + 1;并且根据新容量更新阈值
*/
@SuppressWarnings("unchecked")
protected void rehash() {
int oldCapacity = table.length;
Entry<?, ?>[] oldMap = table; /**
* 新的大小为 原大小 * 2 + 1
* 虽然不保证capacity是一个质数,但至少保证它是一个奇数
*/
int newCapacity = (oldCapacity << 1) + 1;
if (newCapacity - MAX_ARRAY_SIZE > 0) {
if (oldCapacity == MAX_ARRAY_SIZE)
// Keep running with MAX_ARRAY_SIZE buckets
return;
newCapacity = MAX_ARRAY_SIZE;
}
Entry<?, ?>[] newMap = new Entry<?, ?>[newCapacity]; modCount++;
threshold = (int) Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1);
table = newMap;
// 拷贝每个Entry链表
for (int i = oldCapacity; i-- > 0; ) {
for (Entry<K, V> old = (Entry<K, V>) oldMap[i]; old != null; ) {
Entry<K, V> e = old;
old = old.next;
// 重新计算每个Entry链表的表头索引(rehash)
int index = (e.hash & 0x7FFFFFFF) % newCapacity;
// 开辟链表节点
e.next = (Entry<K, V>) newMap[index];
// 拷贝
newMap[index] = e;
}
}
} /**
* 当键值对个数超过阈值,先进行rehash然后添加entry,否则直接添加entry
*/
private void addEntry(int hash, K key, V value, int index) {
modCount++; Entry<?, ?> tab[] = table;
// 当前元素大于等于阈值,就扩容并且再计算hash值
if (count >= threshold) {
rehash(); tab = table;
hash = key.hashCode();
index = (hash & 0x7FFFFFFF) % tab.length;
} // Creates the new entry.
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
// 和HashMap不同,Hashtable选择把新插入的元素放到链表最前边,而且没有使用红黑树
tab[index] = new Entry<>(hash, key, value, e);
count++;
} /**
* 设置键值对,key和value都不可为null,设置顺序:
* 如果Hashtable含有key,设置(key, oldValue) -> (key, newValue);
* 如果Hashtable不含有key, 调用addEntry(...)添加新的键值对;
*
* @param key the hashtable key
* @param value the value
* @return the previous value of the specified key in this hashtable,
* or <code>null</code> if it did not have one
* @throws NullPointerException if the key or value is
* <code>null</code>
* @see Object#equals(Object)
* @see #get(Object)
*/
public synchronized V put(K key, V value) {
// value为空抛出空指针异常
if (value == null) {
throw new NullPointerException();
} // Makes sure the key is not already in the hashtable.
Entry<?, ?> tab[] = table;
/**
* key的hashCode是调用Object的hashCode()方法,
* 是native的方法,如果为null,就会抛出空指针异常
*/
int hash = key.hashCode();
/**
* 因为hash可能为负数,所以就先和0x7FFFFFFF相与
* 在HashMap中,是用 (table.length - 1) & hash 计算要放置的位置
*/
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> entry = (Entry<K, V>) tab[index];
for (; entry != null; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
entry.value = value;
return old;
}
}
// 如果key对应的值不存在,就调用addEntry方法加入
addEntry(hash, key, value, index);
return null;
} /**
* remove操作,计算key所在链表表头table[index],然后进行单向链表的节点删除操作
*
* @param key the key that needs to be removed
* @return the value to which the key had been mapped in this hashtable,
* or <code>null</code> if the key did not have a mapping
* @throws NullPointerException if the key is <code>null</code>
*/
public synchronized V remove(Object key) {
Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (Entry<K, V> prev = null; e != null; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
V oldValue = e.value;
e.value = null;
return oldValue;
}
}
return null;
} /**
* 把所有的 映射从指定的map复制到hashTable中
* 如果给定的map中的key值已经存在于hashTable中,则将会覆盖hashTable中key所对应的value(hashTable中key值不允许重复)
*
* @param t mappings to be stored in this map
* @throws NullPointerException if the specified map is null
* @since 1.2
*/
public synchronized void putAll(Map<? extends K, ? extends V> t) {
//foreach 循环map数据put到hashTable中
for (Map.Entry<? extends K, ? extends V> e : t.entrySet())
put(e.getKey(), e.getValue());
} /**
* 清空Hashtable
* 将Hashtable的table数组的值全部设为null
*/
public synchronized void clear() {
Entry<?, ?> tab[] = table;
modCount++;
for (int index = tab.length; --index >= 0; )
tab[index] = null;
count = 0;
} /**
* 对Hashtable的浅拷贝操作,浅拷贝所有bucket(单向链表组织形式)的表头
*
* @return a clone of the hashtable
*/
public synchronized Object clone() {
try {
Hashtable<?, ?> t = (Hashtable<?, ?>) super.clone();
t.table = new Entry<?, ?>[table.length];
for (int i = table.length; i-- > 0; ) {
t.table[i] = (table[i] != null)
? (Entry<?, ?>) table[i].clone() : null;
}
t.keySet = null;
t.entrySet = null;
t.values = null;
t.modCount = 0;
return t;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
} /**
* 返回Hashtable对象的String表达方式,一系列以括号和逗号,空格分隔的Entry,如{key1=value1, key2=value2}
*
* @return a string representation of this hashtable
*/
public synchronized String toString() {
int max = size() - 1;
if (max == -1)
return "{}"; StringBuilder sb = new StringBuilder();
Iterator<Map.Entry<K, V>> it = entrySet().iterator(); sb.append('{');
for (int i = 0; ; i++) {
Map.Entry<K, V> e = it.next();
K key = e.getKey();
V value = e.getValue();
sb.append(key == this ? "(this Map)" : key.toString());
sb.append('=');
sb.append(value == this ? "(this Map)" : value.toString()); if (i == max)
return sb.append('}').toString();
sb.append(", ");
}
} private <T> Enumeration<T> getEnumeration(int type) {
if (count == 0) {
return Collections.emptyEnumeration();
} else {
return new Enumerator<>(type, false);
}
} /**
* 获得迭代器
*/
private <T> Iterator<T> getIterator(int type) {
if (count == 0) {
return Collections.emptyIterator();
} else {
return new Enumerator<>(type, true);
}
} // 视图 /**
* 以下每个字段初始化后会包含一个首次请求后的指定视图,视图是无状态的,所以不必创建多个
*/
private transient volatile Set<K> keySet;
private transient volatile Set<Map.Entry<K, V>> entrySet;
private transient volatile Collection<V> values; /**
* 返回一个被synchronizedSet封装后的KeySet对象
* synchronizedSet封装的目的是对KeySet的所有方法都添加synchronized,实现多线程同步
*/
public Set<K> keySet() {
if (keySet == null)
keySet = Collections.synchronizedSet(new KeySet(), this);
return keySet;
} /**
* Hashtable的Key的Set集合
* KeySet继承于AbstractSet,所以,KeySet中的元素没有重复的
*/
private class KeySet extends AbstractSet<K> {
public Iterator<K> iterator() {
return getIterator(KEYS);
} public int size() {
return count;
} public boolean contains(Object o) {
return containsKey(o);
} public boolean remove(Object o) {
return Hashtable.this.remove(o) != null;
} public void clear() {
Hashtable.this.clear();
}
} /**
* 返回一个被synchronizedSet封装后的EntrySet对象
* synchronizedSet封装的目的是对EntrySet的所有方法都添加synchronized,实现多线程同步
*/
public Set<Map.Entry<K, V>> entrySet() {
if (entrySet == null)
entrySet = Collections.synchronizedSet(new EntrySet(), this);
return entrySet;
} /**
* Hashtable的Entry的Set集合
* EntrySet继承于AbstractSet,所以,EntrySet中的元素没有重复的
*/
private class EntrySet extends AbstractSet<Map.Entry<K, V>> {
public Iterator<Map.Entry<K, V>> iterator() {
return getIterator(ENTRIES);
} public boolean add(Map.Entry<K, V> o) {
return super.add(o);
} /**
* 查找EntrySet中是否包含Object(0)
* 首先,在table中找到o对应的Entry(Entry是一个单向链表)
* 然后,查找Entry链表中是否存在Object
*/
public boolean contains(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> entry = (Map.Entry<?, ?>) o;
Object key = entry.getKey();
Entry<?, ?>[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length; for (Entry<?, ?> e = tab[index]; e != null; e = e.next)
if (e.hash == hash && e.equals(entry))
return true;
return false;
} /**
* 删除元素Object(0)
* 首先,在table中找到o对应的Entry(Entry是一个单向链表)
* 然后,删除链表中的元素Object
*/
public boolean remove(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> entry = (Map.Entry<?, ?>) o;
Object key = entry.getKey();
Entry<?, ?>[] tab = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length; @SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (Entry<K, V> prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.equals(entry)) {
modCount++;
if (prev != null)
prev.next = e.next;
else
tab[index] = e.next; count--;
e.value = null;
return true;
}
}
return false;
} public int size() {
return count;
} public void clear() {
Hashtable.this.clear();
}
} /**
* 返回一个被synchronizedCollection封装后的ValueCollection对象
* synchronizedCollection封装的目的是对ValueCollection的所有方法都添加synchronized,实现多线程同步
*/
public Collection<V> values() {
if (values == null)
values = Collections.synchronizedCollection(new ValueCollection(),
this);
return values;
} /**
* Hashtable的value的Collection集合。
* ValueCollection继承于AbstractCollection,所以,ValueCollection中的元素可以重复的。
*/
private class ValueCollection extends AbstractCollection<V> {
public Iterator<V> iterator() {
return getIterator(VALUES);
} public int size() {
return count;
} public boolean contains(Object o) {
return containsValue(o);
} public void clear() {
Hashtable.this.clear();
}
} // Comparison and hashing /**
* 重新equals()函数
* 若两个Hashtable的所有key-value键值对都相等,则判断它们两个相等
*
* @param o object to be compared for equality with this hashtable
* @return true if the specified Object is equal to this Map
* @see Map#equals(Object)
* @since 1.2
*/
public synchronized boolean equals(Object o) {
if (o == this)
return true; if (!(o instanceof Map))
return false;
Map<?, ?> t = (Map<?, ?>) o;
if (t.size() != size())
return false; try {
/**
* 通过迭代器依次取出当前Hashtable的key-value键值对
* 并判断该键值对,存在于Hashtable(o)中。
* 若不存在,则立即返回false;否则,遍历完“当前Hashtable”并返回true。
*/
Iterator<Map.Entry<K, V>> i = entrySet().iterator();
while (i.hasNext()) {
Map.Entry<K, V> e = i.next();
K key = e.getKey();
V value = e.getValue();
if (value == null) {
if (!(t.get(key) == null && t.containsKey(key)))
return false;
} else {
if (!value.equals(t.get(key)))
return false;
}
}
} catch (ClassCastException unused) {
return false;
} catch (NullPointerException unused) {
return false;
} return true;
} /**
* 计算Hashtable的哈希值
*
* @see Map#hashCode()
* @since 1.2
*/
public synchronized int hashCode() {
int h = 0;
//若 Hashtable的实际大小为0 或者 加载因子<0,则返回0
if (count == 0 || loadFactor < 0)
return h; // Returns zero loadFactor = -loadFactor; // Mark hashCode computation in progress
Entry<?, ?>[] tab = table;
//返回Hashtable中的每个Entry的key和value的异或值的总和
for (Entry<?, ?> entry : tab) {
while (entry != null) {
h += entry.hashCode();
entry = entry.next;
}
} loadFactor = -loadFactor; // Mark hashCode computation complete return h;
} @Override
public synchronized V getOrDefault(Object key, V defaultValue) {
V result = get(key);
return (null == result) ? defaultValue : result;
} @SuppressWarnings("unchecked")
@Override
public synchronized void forEach(BiConsumer<? super K, ? super V> action) {
Objects.requireNonNull(action); // explicit check required in case
// table is empty.
final int expectedModCount = modCount; Entry<?, ?>[] tab = table;
for (Entry<?, ?> entry : tab) {
while (entry != null) {
action.accept((K) entry.key, (V) entry.value);
entry = entry.next; if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
} @SuppressWarnings("unchecked")
@Override
public synchronized void replaceAll(BiFunction<? super K, ? super V, ? extends V> function) {
Objects.requireNonNull(function); // explicit check required in case
// table is empty.
final int expectedModCount = modCount; Entry<K, V>[] tab = (Entry<K, V>[]) table;
for (Entry<K, V> entry : tab) {
while (entry != null) {
entry.value = Objects.requireNonNull(
function.apply(entry.key, entry.value));
entry = entry.next; if (expectedModCount != modCount) {
throw new ConcurrentModificationException();
}
}
}
} @Override
public synchronized V putIfAbsent(K key, V value) {
Objects.requireNonNull(value); // Makes sure the key is not already in the hashtable.
Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> entry = (Entry<K, V>) tab[index];
for (; entry != null; entry = entry.next) {
if ((entry.hash == hash) && entry.key.equals(key)) {
V old = entry.value;
if (old == null) {
entry.value = value;
}
return old;
}
} addEntry(hash, key, value, index);
return null;
} @Override
public synchronized boolean remove(Object key, Object value) {
Objects.requireNonNull(value); Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (Entry<K, V> prev = null; e != null; prev = e, e = e.next) {
if ((e.hash == hash) && e.key.equals(key) && e.value.equals(value)) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
e.value = null;
return true;
}
}
return false;
} @Override
public synchronized boolean replace(K key, V oldValue, V newValue) {
Objects.requireNonNull(oldValue);
Objects.requireNonNull(newValue);
Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
if (e.value.equals(oldValue)) {
e.value = newValue;
return true;
} else {
return false;
}
}
}
return false;
} /**
* 替换
*
* @param key
* @param value
* @return
*/
@Override
public synchronized V replace(K key, V value) {
Objects.requireNonNull(value);
Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (; e != null; e = e.next) {
if ((e.hash == hash) && e.key.equals(key)) {
V oldValue = e.value;
e.value = value;
return oldValue;
}
}
return null;
} @Override
public synchronized V computeIfAbsent(K key, Function<? super K, ? extends V> mappingFunction) {
Objects.requireNonNull(mappingFunction); Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (; e != null; e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
// Hashtable not accept null value
return e.value;
}
} V newValue = mappingFunction.apply(key);
if (newValue != null) {
addEntry(hash, key, newValue, index);
} return newValue;
} @Override
public synchronized V computeIfPresent(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction); Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (Entry<K, V> prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
V newValue = remappingFunction.apply(key, e.value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
}
return null;
} @Override
public synchronized V compute(K key, BiFunction<? super K, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction); Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (Entry<K, V> prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && Objects.equals(e.key, key)) {
V newValue = remappingFunction.apply(key, e.value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
} V newValue = remappingFunction.apply(key, null);
if (newValue != null) {
addEntry(hash, key, newValue, index);
} return newValue;
} @Override
public synchronized V merge(K key, V value, BiFunction<? super V, ? super V, ? extends V> remappingFunction) {
Objects.requireNonNull(remappingFunction); Entry<?, ?> tab[] = table;
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
for (Entry<K, V> prev = null; e != null; prev = e, e = e.next) {
if (e.hash == hash && e.key.equals(key)) {
V newValue = remappingFunction.apply(e.value, value);
if (newValue == null) {
modCount++;
if (prev != null) {
prev.next = e.next;
} else {
tab[index] = e.next;
}
count--;
} else {
e.value = newValue;
}
return newValue;
}
} if (value != null) {
addEntry(hash, key, value, index);
} return value;
} /**
* 将Hashtable的总的容量,实际容量,所有的Entry都写入到输出流中
*/
private void writeObject(java.io.ObjectOutputStream s)
throws IOException {
Entry<Object, Object> entryStack = null; synchronized (this) {
// Write out the threshold and loadFactor
s.defaultWriteObject(); // Write out the length and count of elements
s.writeInt(table.length);
s.writeInt(count); // Stack copies of the entries in the table
for (int index = 0; index < table.length; index++) {
Entry<?, ?> entry = table[index]; while (entry != null) {
entryStack =
new Entry<>(0, entry.key, entry.value, entryStack);
entry = entry.next;
}
}
} // Write out the key/value objects from the stacked entries
while (entryStack != null) {
s.writeObject(entryStack.key);
s.writeObject(entryStack.value);
entryStack = entryStack.next;
}
} /**
* 将Hashtable的总的容量,实际容量,所有的Entry依次读出
*/
private void readObject(java.io.ObjectInputStream s)
throws IOException, ClassNotFoundException {
// Read in the threshold and loadFactor
s.defaultReadObject(); // Validate loadFactor (ignore threshold - it will be re-computed)
if (loadFactor <= 0 || Float.isNaN(loadFactor))
throw new StreamCorruptedException("Illegal Load: " + loadFactor); // Read the original length of the array and number of elements
int origlength = s.readInt();
int elements = s.readInt(); // Validate # of elements
if (elements < 0)
throw new StreamCorruptedException("Illegal # of Elements: " + elements); // Clamp original length to be more than elements / loadFactor
// (this is the invariant enforced with auto-growth)
origlength = Math.max(origlength, (int) (elements / loadFactor) + 1); // Compute new length with a bit of room 5% + 3 to grow but
// no larger than the clamped original length. Make the length
// odd if it's large enough, this helps distribute the entries.
// Guard against the length ending up zero, that's not valid.
int length = (int) ((elements + elements / 20) / loadFactor) + 3;
if (length > elements && (length & 1) == 0)
length--;
length = Math.min(length, origlength); // Check Map.Entry[].class since it's the nearest public type to
// what we're actually creating.
SharedSecrets.getJavaOISAccess().checkArray(s, Map.Entry[].class, length);
table = new Entry<?, ?>[length];
threshold = (int) Math.min(length * loadFactor, MAX_ARRAY_SIZE + 1);
count = 0; // Read the number of elements and then all the key/value objects
for (; elements > 0; elements--) {
@SuppressWarnings("unchecked")
K key = (K) s.readObject();
@SuppressWarnings("unchecked")
V value = (V) s.readObject();
// sync is eliminated for performance
reconstitutionPut(table, key, value);
}
} /**
* readObject使用的put方法(重建put),因为put方法支持重写,并且子类尚未初始化的时候不能调用put方法,所以就提供了reconstitutionPut
* 它和常规put方法有几点不同,不检测rehash,因为初始元素数目已知。modCount不会自增,因为我们是在创建一个新的实例。
*/
private void reconstitutionPut(Entry<?, ?>[] tab, K key, V value)
throws StreamCorruptedException {
if (value == null) {
throw new java.io.StreamCorruptedException();
}
// 确保Key不在Hashtable中
// 反序列化过程中不应该 会发生的情况
int hash = key.hashCode();
int index = (hash & 0x7FFFFFFF) % tab.length;
for (Entry<?, ?> e = tab[index]; e != null; e = e.next) {
//反序列化过程中如果出现Key值重复,抛出异常StreamCorruptedException
if ((e.hash == hash) && e.key.equals(key)) {
throw new java.io.StreamCorruptedException();
}
}
// 创建新的Entry.
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
tab[index] = new Entry<>(hash, key, value, e);
count++;
} /**
* Hashtable的Entry节点,它本质上是一个单向链表。
* 因此,我们能推断出Hashtable是由拉链法实现的散列表
*/
private static class Entry<K, V> implements Map.Entry<K, V> {
final int hash;
final K key;
V value;
Entry<K, V> next; protected Entry(int hash, K key, V value, Entry<K, V> next) {
this.hash = hash;
this.key = key;
this.value = value;
this.next = next;
} @SuppressWarnings("unchecked")
protected Object clone() {
return new Entry<>(hash, key, value,
(next == null ? null : (Entry<K, V>) next.clone()));
} // Map.Entry Ops public K getKey() {
return key;
} public V getValue() {
return value;
} // 进行判断value是否为空,即不允许value为空,其实key也不能为空
public V setValue(V value) {
if (value == null)
throw new NullPointerException(); V oldValue = this.value;
this.value = value;
return oldValue;
} // 覆盖equals()方法,判断两个Entry是否相等。
// 若两个Entry的key和value都相等,则认为它们相等。
public boolean equals(Object o) {
if (!(o instanceof Map.Entry))
return false;
Map.Entry<?, ?> e = (Map.Entry<?, ?>) o; return (key == null ? e.getKey() == null : key.equals(e.getKey())) &&
(value == null ? e.getValue() == null : value.equals(e.getValue()));
} public int hashCode() {
// 直接用hash进行异或,与HashMap不同
return hash ^ Objects.hashCode(value);
} public String toString() {
return key.toString() + "=" + value.toString();
}
} // Types of Enumerations/Iterations
private static final int KEYS = 0;
private static final int VALUES = 1;
private static final int ENTRIES = 2; /**
* Enumerator的作用是提供了通过elements()遍历Hashtable的接口和通过entrySet()遍历Hashtable的接口。
* 因为,它同时实现了 Enumerator接口和Iterator接口。
*/
private class Enumerator<T> implements Enumeration<T>, Iterator<T> {
// 指向Hashtable的table
Entry<?, ?>[] table = Hashtable.this.table;
// Hashtable的总的大小
int index = table.length;
Entry<?, ?> entry;
Entry<?, ?> lastReturned;
int type; /**
* Enumerator是 迭代器(Iterator) 还是 枚举类(Enumeration)的标志
* iterator为true,表示它是迭代器;否则,是枚举类。
*/
boolean iterator; /**
* 在将Enumerator当作迭代器使用时会用到,用来实现fail-fast机制。
*/
protected int expectedModCount = modCount; Enumerator(int type, boolean iterator) {
this.type = type;
this.iterator = iterator;
} /**
* 从遍历table的数组的末尾向前查找,直到找到不为null的Entry。
*/
public boolean hasMoreElements() {
Entry<?, ?> e = entry;
int i = index;
Entry<?, ?>[] t = table;
/* Use locals for faster loop iteration */
while (e == null && i > 0) {
e = t[--i];
}
entry = e;
index = i;
return e != null;
} /**
* 获取下一个元素
* 注意:从hasMoreElements() 和nextElement() 可以看出Hashtable的elements()遍历方式
* 首先,从后向前的遍历table数组。table数组的每个节点都是一个单向链表(Entry)。
* 然后,依次向后遍历单向链表Entry。
*/
@SuppressWarnings("unchecked")
public T nextElement() {
Entry<?, ?> et = entry;
int i = index;
Entry<?, ?>[] t = table;
/* Use locals for faster loop iteration */
while (et == null && i > 0) {
et = t[--i];
}
entry = et;
index = i;
if (et != null) {
Entry<?, ?> e = lastReturned = entry;
entry = e.next;
return type == KEYS ? (T) e.key : (type == VALUES ? (T) e.value : (T) e);
}
throw new NoSuchElementException("Hashtable Enumerator");
} // 迭代器Iterator的判断是否存在下一个元素
// 实际上,它是调用的hasMoreElements()
public boolean hasNext() {
return hasMoreElements();
} // 迭代器获取下一个元素
// 实际上,它是调用的nextElement()
public T next() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return nextElement();
} // 迭代器的remove()接口。
// 首先,它在table数组中找出要删除元素所在的Entry,
// 然后,删除单向链表Entry中的元素。
public void remove() {
if (!iterator)
throw new UnsupportedOperationException();
if (lastReturned == null)
throw new IllegalStateException("Hashtable Enumerator");
if (modCount != expectedModCount)
throw new ConcurrentModificationException(); synchronized (Hashtable.this) {
Entry<?, ?>[] tab = Hashtable.this.table;
int index = (lastReturned.hash & 0x7FFFFFFF) % tab.length; //获取该槽位第一个元素
@SuppressWarnings("unchecked")
Entry<K, V> e = (Entry<K, V>) tab[index];
//从单链表的一端向后遍历
for (Entry<K, V> prev = null; e != null; prev = e, e = e.next) {
//当前元素即为上一个返回元素
if (e == lastReturned) {
modCount++;
expectedModCount++;
//删除上一个元素
if (prev == null)
tab[index] = e.next;
else
prev.next = e.next;
count--;
lastReturned = null;
return;
}
}
throw new ConcurrentModificationException();
}
}
}
}

Hashtable源码解析(JDK1.8)的更多相关文章

  1. 源码解析JDK1.8-HashMap链表成环的问题解决方案

    前言 上篇文章详解介绍了HashMap在JDK1.7版本中链表成环的原因,今天介绍下JDK1.8针对HashMap线程安全问题的解决方案. jdk1.8 扩容源码解析 public class Has ...

  2. Java集合-ArrayList源码解析-JDK1.8

    ◆ ArrayList简介 ◆ ArrayList 是一个数组队列,相当于 动态数组.与Java中的数组相比,它的容量能动态增长.它继承于AbstractList,实现了List, RandomAcc ...

  3. ArrayList、CopyOnWriteArrayList源码解析(JDK1.8)

    本篇文章主要是学习后的知识记录,存在不足,或许不够深入,还请谅解. 目录 ArrayList源码解析 ArrayList中的变量 ArrayList构造函数 ArrayList中的add方法 Arra ...

  4. Hashtable源码解析

    Hashtable同样是基于哈希表实现的,同样每个元素是一个key-value对,其内部也是通过单链表解决冲突问题,容量不足(超过了阀值)时,同样会自动增长. Hashtable也是JDK1.0引入的 ...

  5. Map集合类(一.hashMap源码解析jdk1.8)

    java集合笔记一 java集合笔记二 java集合笔记三 jdk 8 之前,其内部是由数组+链表来实现的,而 jdk 8 对于链表长度超过 8 的链表将转储为红黑树 1.属性 //节点数组,第一次使 ...

  6. Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例

    概要 前一章,我们学习了HashMap.这一章,我们对Hashtable进行学习.我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable.第1部分 Ha ...

  7. 【转】Java 集合系列11之 Hashtable详细介绍(源码解析)和使用示例

    概要 前一章,我们学习了HashMap.这一章,我们对Hashtable进行学习.我们先对Hashtable有个整体认识,然后再学习它的源码,最后再通过实例来学会使用Hashtable.第1部分 Ha ...

  8. Java并发包源码学习系列:JDK1.8的ConcurrentHashMap源码解析

    目录 为什么要使用ConcurrentHashMap? ConcurrentHashMap的结构特点 Java8之前 Java8之后 基本常量 重要成员变量 构造方法 tableSizeFor put ...

  9. [源码解析]HashMap和HashTable的区别(源码分析解读)

    前言: 又是一个大好的周末, 可惜今天起来有点晚, 扒开HashMap和HashTable, 看看他们到底有什么区别吧. 先来一段比较拗口的定义: Hashtable 的实例有两个参数影响其性能:初始 ...

随机推荐

  1. docker-compose 完整打包发布, 多服务,多节点SPRING CLOUD ,EUREKA 集群

    这里不再使用 端口映射的方式,因为不同主机上,Feign 根据 docker hostname访问会有问题. 把打包的好jar copy到docker镜像里 有几个服务,就复制几个dockerfile ...

  2. 关键字final的用法

    final关键字可以用来修饰类.方法和变量. 1.final修饰的类不能被继承. 2.final修饰的方法不能被重写. 3.final修饰的变量是常量,不能修改其值.

  3. 为什么在Python里推荐使用多进程而不是多线程

    转载  http://bbs.51cto.com/thread-1349105-1.html 最近在看Python的多线程,经常我们会听到老手说:"Python下多线程是鸡肋,推荐使用多进程 ...

  4. Storm实践

    1.Storm命令 在Linux中观直接输入Storm,不带任何参数信息,可以查看Storm命令. 参考这里 1.  activate 激活指定的拓扑Spout.语法:storm activate t ...

  5. linux web服务器及LAMP动态网站平台搭建

    (vim补:)vim另存为:x,x w 目标文件路径vim批量删除x:x,x d Web服务:基于B/S架构的web通信服务端:支持HTTP协议的网页提供程序客户端:按标记规范显示网页的浏览器程序客户 ...

  6. 6.2 PowerPC处理器如何处理MSI中断请求

    PowerPC处理器使用OpenPIC中断控制器或者MPIC中断控制器,处理外部中断请求.其中MPIC中断控制器基于OpenPIC中断控制器,但是作出了许多增强,目前Freescale新推出的Powe ...

  7. WIN2003+IIS6+FastCGI+PHP5.3的安装配置

    本文所用的软件的下载地址 fastcgi的下载地址:http://download.microsoft.com/download/E/0/C/E0C0709A-66E5-4113-9A6C-A5F65 ...

  8. 导出CSV格式文件,用Excel打开乱码的解决办法

    导出CSV格式文件,用Excel打开乱码的解决办法 1.治标不治本的办法 将导出CSV数据文件用记事本打开,然后另存为"ANSI"编码格式,再用Excel打开,乱码解决. 但是,这 ...

  9. hi3531的h264压缩中修改波特率

    typedef struct hiVENC_ATTR_H264_CBR_S { HI_U32 u32Gop; HI_U32 u32StatTime; HI_U32 u32ViFrmRate; HI_F ...

  10. Linux显示cat帮助信息并退出

    Linux显示cat帮助信息并退出 youhaidong@youhaidong-ThinkPad-Edge-E545:~$ cat --help 用法:cat [选项]... [文件]... 将[文件 ...