机器学习之sklearn——聚类
生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征个数,centers表示y的种类数
- make_blobs函数是为聚类产生数据集
- 产生一个数据集和相应的标签
- n_samples:表示数据样本点个数,默认值100
- n_features:表示数据的维度,默认值是2
- centers:产生数据的中心点,默认值3
- cluster_std:数据集的标准差,浮点数或者浮点数序列,默认值1.0
- center_box:中心确定之后的数据边界,默认值(-10.0, 10.0)
- shuffle :洗乱,默认值是True
- random_state:官网解释是随机生成器的种子
y3 = np.array([0]*100 + [1]*50 + [2]*20 + [3]*5)可以这样建立array数组
k-means对于方差不相等和数据与坐标轴不平行时效果不理想;对于数据大小不相等不太敏感。
聚类性能的评价指标:(1)有监督时:均一性sklearn.metrics.homogeneity_score,完整性sklearn.metrics.completeness_score,还有二者的加权平均v_measure_score,ARI(Adjusted Rand index(调整兰德指数)(ARI))sklearn.metrics.adjusted_rand_score, AMI sklearn.metrics.adjusted_mutual_info_score
ARI取值范围为[−1,1],值越大意味着聚类结果与真实情况越吻合。从广义的角度来讲,ARI衡量的是两个数据分布的吻合程度。AMI使用与ARI相同的几号,但是用的是信息熵。(具体参见小象机器学习升级版聚类实践ppt)
DBSCAN聚类算法:class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, random_state=None)
eps:点之间的间距,大于这个间距的就不算一个簇了。
min_samples:可以算作核心点的高密度区域的最少点个数。
metric:距离公式,可以用默认的欧式距离,还可以自己定义距离函数。
algorithm:发现近邻的方法,是暴力brute,二维空间的距离树kd_tree还是球状树形结构ball_tree。这个参数主要是为了降低计算复杂度的,可以从O(N^2)降到O(n*log(n))。换句话说,无论哪种算法都会达到最后的结果,影响的只是性能。
leaf_size:配合两种_tree算法的。
random_state:不用。
生成的model = DBSCAN(), model.labels_:所有点的分类结果。无论核心点还是边界点,只要是同一个簇的都被赋予同样的label,噪声点为-1.
model.core_sample_indices_:核心点的索引,因为labels_不能区分核心点还是边界点,所以需要用这个索引确定核心点。
所有的数据被分为三类点:
核心点。在半径eps内含有超过min_samples数目的点。
边界点。在半径eps内点的数量小于min_samples,但是落在核心点的邻域内,也就是说该点不是核心点,但是与其他核心点的距离小于eps。
噪音点。既不是核心点也不是边界点的点,该类点的周围数据点非常少。
sklearn.preprocessing 对数据进行预处理(归一化、标准化、正则化)(以后总结)
机器学习之sklearn——聚类的更多相关文章
- 机器学习六--K-means聚类算法
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...
- sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM
1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...
- Python机器学习库sklearn的安装
Python机器学习库sklearn的安装 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口 ...
- 学习sklearn聚类使用
学习利用sklearn的几个聚类方法: 一.几种聚类方法 1.高斯混合聚类(mixture of gaussians) 2.k均值聚类(kmeans) 3.密度聚类,均值漂移(mean shift) ...
- 机器学习总结-sklearn参数解释
本文转自:lytforgood 机器学习总结-sklearn参数解释 实验数据集选取: 1分类数据选取 load_iris 鸢尾花数据集 from sklearn.datasets import lo ...
- 机器学习:K-Means聚类算法
本文来自同步博客. 前面几篇文章介绍了回归或分类的几个算法,它们的共同点是训练数据包含了输出结果,要求算法能够通过训练数据掌握规律,用于预测新输入数据的输出值.因此,回归算法或分类算法被称之为监督学习 ...
- 【Python机器学习实战】聚类算法(1)——K-Means聚类
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算 ...
- 机器学习实战 | SKLearn最全应用指南
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...
- Stanford机器学习笔记-9. 聚类(Clustering)
9. Clustering Content 9. Clustering 9.1 Supervised Learning and Unsupervised Learning 9.2 K-means al ...
随机推荐
- 多线程映射工具——ThreadLocal
ThreadLocal相当于一个Map<Thread, T>,各线程使用自己的线程对象Thread.currentThread()作为键存取数据,但ThreadLocal实际上是一个包装了 ...
- Git同步原始仓库到Fork仓库中
前言 本文介绍的是Git同步原始仓库到Fork仓库示例教程,废话不多说,下面直接到实操部分. 这里以aspnetcore-doc-cn的github仓库为例,同步dev分支. 步骤 1.初始化本地仓库 ...
- JavaScript弹窗
警告框: alert("警告信息!"); alert("警告\n信息!"); 确认框: var t=confirm("请确认!"); // ...
- Is-A,Has-A,Use-A(转载)
原文地址:http://blog.csdn.net/loveyou128144/article/details/4749576 而Is-A,Has-A,Use-A则是用来描述类与类之间关系的.简单的说 ...
- Spring学习系列(一) Spring简介
Spring简介 之前一直想写点东西,可一直没有开始实施,各种原因都有,最大原因可能还是自己太懒了,嘿嘿.最近在看Spring in action这本书,为了能让自己坚持下去把书看完,这次决定同步的在 ...
- Java01
1.JAVA历史概述 百度百科:http://baike.baidu.com/view/29.htm 詹姆斯.高斯林 (高司令)----java之父 Sun Micros ...
- Jsp语法简介
1.JSP指令 jsp指令用来设置整个JSP网页想关闭的属性,如网页的编码和脚本语言等.常用的3种指令为page,include和taglib. 2.JSP声明 jsp声明用于声明JSP代表的Serv ...
- shell笔记
shell:俗称操作系统的"外壳",就是命令解释程序. 是用户与Linux内核之间的接口. 是负责与用户交互,分析.执行用户输入的命令,并给出结果或出错提示. ...
- 乱码引起的CSS失效原理,解决技巧。
由于一个中文是两个字符组成,在编码不一致的情况下会引发字符的“重新”组合,(半个汉字的编码字符与后面的字符组合生成新的“文字”)引发原本的结束符合“变异”,从而导致找不到结束符号,使得后面的CSS就会 ...
- BI解决方案分享:地产BI数据分析系统的建设
近几年中国地产行业发展迅猛,行业整合已成大势所趋,逐步由区域开发转变为集团化的跨地区综合开发商.然而,对于处在超常规速度发展的房地产企业来说,其面临的挑战也是超常规的.企业要在有限的资金和人力条件下, ...