机器学习之sklearn——聚类
生成数据集方法:sklearn.datasets.make_blobs(n_samples,n_featurs,centers)可以生成数据集,n_samples表示个数,n_features表示特征个数,centers表示y的种类数
- make_blobs函数是为聚类产生数据集
- 产生一个数据集和相应的标签
- n_samples:表示数据样本点个数,默认值100
- n_features:表示数据的维度,默认值是2
- centers:产生数据的中心点,默认值3
- cluster_std:数据集的标准差,浮点数或者浮点数序列,默认值1.0
- center_box:中心确定之后的数据边界,默认值(-10.0, 10.0)
- shuffle :洗乱,默认值是True
- random_state:官网解释是随机生成器的种子
y3 = np.array([0]*100 + [1]*50 + [2]*20 + [3]*5)可以这样建立array数组
k-means对于方差不相等和数据与坐标轴不平行时效果不理想;对于数据大小不相等不太敏感。
聚类性能的评价指标:(1)有监督时:均一性sklearn.metrics.homogeneity_score,完整性sklearn.metrics.completeness_score,还有二者的加权平均v_measure_score,ARI(Adjusted Rand index(调整兰德指数)(ARI))sklearn.metrics.adjusted_rand_score, AMI sklearn.metrics.adjusted_mutual_info_score
ARI取值范围为[−1,1],值越大意味着聚类结果与真实情况越吻合。从广义的角度来讲,ARI衡量的是两个数据分布的吻合程度。AMI使用与ARI相同的几号,但是用的是信息熵。(具体参见小象机器学习升级版聚类实践ppt)

DBSCAN聚类算法:class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric='euclidean', algorithm='auto', leaf_size=30, p=None, random_state=None)
eps:点之间的间距,大于这个间距的就不算一个簇了。
min_samples:可以算作核心点的高密度区域的最少点个数。
metric:距离公式,可以用默认的欧式距离,还可以自己定义距离函数。
algorithm:发现近邻的方法,是暴力brute,二维空间的距离树kd_tree还是球状树形结构ball_tree。这个参数主要是为了降低计算复杂度的,可以从O(N^2)降到O(n*log(n))。换句话说,无论哪种算法都会达到最后的结果,影响的只是性能。
leaf_size:配合两种_tree算法的。
random_state:不用。
生成的model = DBSCAN(), model.labels_:所有点的分类结果。无论核心点还是边界点,只要是同一个簇的都被赋予同样的label,噪声点为-1.
model.core_sample_indices_:核心点的索引,因为labels_不能区分核心点还是边界点,所以需要用这个索引确定核心点。
所有的数据被分为三类点:
核心点。在半径eps内含有超过min_samples数目的点。
边界点。在半径eps内点的数量小于min_samples,但是落在核心点的邻域内,也就是说该点不是核心点,但是与其他核心点的距离小于eps。
噪音点。既不是核心点也不是边界点的点,该类点的周围数据点非常少。
sklearn.preprocessing 对数据进行预处理(归一化、标准化、正则化)(以后总结)
机器学习之sklearn——聚类的更多相关文章
- 机器学习六--K-means聚类算法
机器学习六--K-means聚类算法 想想常见的分类算法有决策树.Logistic回归.SVM.贝叶斯等.分类作为一种监督学习方法,要求必须事先明确知道各个类别的信息,并且断言所有待分类项都有一个类别 ...
- sklearn聚类模型:基于密度的DBSCAN;基于混合高斯模型的GMM
1 sklearn聚类方法详解 2 对比不同聚类算法在不同数据集上的表现 3 用scikit-learn学习K-Means聚类 4 用scikit-learn学习DBSCAN聚类 (基于密度的聚类) ...
- Python机器学习库sklearn的安装
Python机器学习库sklearn的安装 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上能够为用户提供各种机器学习算法接口 ...
- 学习sklearn聚类使用
学习利用sklearn的几个聚类方法: 一.几种聚类方法 1.高斯混合聚类(mixture of gaussians) 2.k均值聚类(kmeans) 3.密度聚类,均值漂移(mean shift) ...
- 机器学习总结-sklearn参数解释
本文转自:lytforgood 机器学习总结-sklearn参数解释 实验数据集选取: 1分类数据选取 load_iris 鸢尾花数据集 from sklearn.datasets import lo ...
- 机器学习:K-Means聚类算法
本文来自同步博客. 前面几篇文章介绍了回归或分类的几个算法,它们的共同点是训练数据包含了输出结果,要求算法能够通过训练数据掌握规律,用于预测新输入数据的输出值.因此,回归算法或分类算法被称之为监督学习 ...
- 【Python机器学习实战】聚类算法(1)——K-Means聚类
实战部分主要针对某一具体算法对其原理进行较为详细的介绍,然后进行简单地实现(可能对算法性能考虑欠缺),这一部分主要介绍一些常见的一些聚类算法. K-means聚类算法 0.聚类算法算法简介 聚类算法算 ...
- 机器学习实战 | SKLearn最全应用指南
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/41 本文地址:http://www.showmeai.tech/article-det ...
- Stanford机器学习笔记-9. 聚类(Clustering)
9. Clustering Content 9. Clustering 9.1 Supervised Learning and Unsupervised Learning 9.2 K-means al ...
随机推荐
- Chrome在302重定向的时候对原请求产生2次请求的问题说明
这个问题应该确确实实是一个Chrome的BUG,我在自己的编程环境中发现,并在多个服务器,多个编程语言的运行环境,以及多个浏览器下都测试过,都看到有2次请求出现.为了证明不是自己环境的问题,我也特意去 ...
- android 在 ListView 的 item 中插入 GridView 仿微信朋友圈图片显示。
转载请声明出处(http://www.cnblogs.com/linguanh/) 先上张效果图: 1,思路简述 这个肯定是要重写 baseAdapter的了,这里我分了两个数据适配器,一个是自定义的 ...
- 图的遍历(搜索)算法(深度优先算法DFS和广度优先算法BFS)
图的遍历的定义: 从图的某个顶点出发访问遍图中所有顶点,且每个顶点仅被访问一次.(连通图与非连通图) 深度优先遍历(DFS): 1.访问指定的起始顶点: 2.若当前访问的顶点的邻接顶点有未被访问的,则 ...
- 用SignalR 2.0开发客服系统[系列2:实现聊天室]
前言 交流群:195866844 上周发表了 用SignalR 2.0开发客服系统[系列1:实现群发通讯] 这篇文章,得到了很多帮助和鼓励,小弟在此真心的感谢大家的支持.. 这周继续系列2,实现聊天室 ...
- centos7查看系统版本,查看机器位数x86-64
前言 由于不经常使用linux,每当使用的时候就是安装软件,安装软件的时候就要选择安装包平台,是32位的还是64位的.这时候突然发现不知道怎么查,于是百度.虽然轻而易举百度出来,但仍旧没有自己的笔记看 ...
- JS魔法堂:不完全国际化&本地化手册 之 实战篇
前言 最近加入到新项目组负责前端技术预研和选型,其中涉及到一个熟悉又陌生的需求--国际化&本地化.熟悉的是之前的项目也玩过,陌生的是之前的实现仅仅停留在"有"的阶段而已. ...
- ASP.NET + EF + SQL Server搭建个人博客系统新手系列(一):界面展示
第一次写博客,可能有些地方描述的不准确,还请大家将就.本人大四学生,学了半年C#,半年.net,但是很遗憾,学完之后只会写个hello word.老师教的过程中总是会套用一些模板,特别是后台,完全封装 ...
- 在基于MVC的Web项目中使用Web API和直接连接两种方式混合式接入
在我之前介绍的混合式开发框架中,其界面是基于Winform的实现方式,后台使用Web API.WCF服务以及直接连接数据库的几种方式混合式接入,在Web项目中我们也可以采用这种方式实现混合式的接入方式 ...
- 【手记】调用Process.EnterDebugMode引发异常:并非所有引用的特权或组都分配给呼叫方
刚上线一个新版本,其中有台电脑打开软件就报[xx的类型初始值设定项引发异常](还好不是一大波电脑,新东西上线就怕哀鸿遍野),如图: 显然是该类型的静态构造函数中抛异常了(红线处就是类名),遂打开该类, ...
- 在公有云AZURE上部署私有云AZUREPACK以及WEBSITE CLOUD(六)
(六)在Website Cloud中添加site 1新建Website,并打开 使用前面创建的用户 newbee@waplab.com 登录租户Portal,新建一个website 新建完成后, 可以 ...