Python----Kernel SVM
什么是kernel
Kernel的其实就是将向量feature转换与点积运算合并后的运算,如下,
概念上很简单,但是并不是所有的feature转换函数都有kernel的特性。
常见kernel
常见kernel有多项式,高斯和线性,各有利弊。
kernel SVM
在非线性的SVM算法中,如何将一组线性不可分的数据,利用从低维到高维的投射,使它变成在高维空间中线性可分的数据。将已经分割好的数据,投射回到原先的空间,及低维空间。
(1)一维空间
一维空间中的线性分类,找是否从在一个点,使一边都是红,一边都是绿,显然这样的线性分类器是不存在的。所以将数据投射到二维的空间里,例如:
(2)二维
投射,保持X1轴和X2轴不变,增加第三个轴,将X1,X2两个点投射到一个三维空间里,前两个维度不变,第三个z与X1,X2有关系;在新的三维空间里,绿色和红色就变成了线性可分。线性可分在不是二维的空间中,有一个超平面,将两组数据分开。
(3)反向投射
三维空间中找到的分割的平面,与数据本身结构,根据这两个信息,找出在原来数据空间二维空间中的分类界线。
核技巧在非线性SVM的应用
(1)非线性SVM最常用的核方程:
假设只有一个自变量X,而l已定,看成一个关于X的函数,此时的函数在空间中的形态
l点就是(0,0)这个点
利用高斯核函数算出分类函数:
绿点所对应的高斯核函数的值,坐落在白色圈的里面(小山上);红点所对应的高斯核函数的值,坐落在周围深蓝色图像上。做出的投影图。
σ:控制圈的半径(大小)
(2)较复杂的二维
此时的核函数
实例
数据集
# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd # Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2,3]].values
y = dataset.iloc[:, 4].values # Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test) # Fitting Logistic Regression to the Training set
#训练集拟合SVM的分类器
#从模型的标准库中导入需要的类
from sklearn.svm import SVC
#创建分类器
classifier = SVC(kernel = 'rbf', random_state = 0)#rbf运用了高斯核
#运用训练集拟合分类器
classifier.fit(X_train, y_train) # Predicting the Test set results
#运用拟合好的分类器预测测试集的结果情况
#创建变量(包含预测出的结果)
y_pred = classifier.predict(X_test) # Making the Confusion Matrix
#通过测试的结果评估分类器的性能
#用混淆矩阵,评估性能
#65,24对应着正确的预测个数;8,3对应错误预测个数;拟合好的分类器正确率:(65+24)/100
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred) # Visualising the Training set results
#在图像看分类结果
from matplotlib.colors import ListedColormap
#创建变量
X_set, y_set = X_train, y_train
#x1,x2对应图中的像素;最小值-1,最大值+1,-1和+1是为了让图的边缘留白,像素之间的距离0.01;第一行年龄,第二行年收入
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
#将不同像素点涂色,用拟合好的分类器预测每个点所属的分类并且根据分类值涂色
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
#标注最大值及最小值
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
#为了滑出实际观测的点(黄、蓝)
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('orange', 'blue'))(i), label = j)
plt.title('Classifier (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
#显示不同的点对应的值
plt.legend()
#生成图像
plt.show() # Visualising the Test set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('orange', 'blue'))(i), label = j)
plt.title('Classifier (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()
训练集图像显示结果:
测试集图像显示结果:
Python----Kernel SVM的更多相关文章
- Kernel Methods (4) Kernel SVM
(本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...
- Python实现SVM(支持向量机)
Python实现SVM(支持向量机) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end ...
- 基于Python使用SVM识别简单的字符验证码的完整代码开源分享
关键字:Python,SVM,字符验证码,机器学习,验证码识别 1 概述 基于Python使用SVM识别简单的验证字符串的完整代码开源分享. 因为目前有了更厉害的新技术来解决这类问题了,但是本文作 ...
- (转载)python应用svm算法过程
除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导 ...
- jupyter notebook添加Anaconda虚拟环境的python kernel
之前在自己博客上写了一个如何通过自建配置文件,让jupyter notebook可以调用conda虚拟环境的python解释器. 今天介绍一种更加简单的方式,无需手动配置文件,利用ipykernel可 ...
- 基于jupyter lab搭建网页编程环境并添加自定义python kernel和matlab kernel以及plotly的使用
内容转载自我的博客 目录 说明 1. 创建虚拟环境jupyter 2. 安装nodejs(用于jupyterlab安装扩展) 3. 安装pip包 4. 使用jupyterlab 5. 配置jupyte ...
- 【367】通过 python 实现 SVM 硬边界 算法
参考: 支持向量机整理 SVM 硬边界的结果如下: $$min \quad \frac{1}{2} \sum_{i=1}^m\sum_{j=1}^m \alpha_i\alpha_jy_iy_j \v ...
- 机器学习经典算法详解及Python实现--基于SMO的SVM分类器
原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector ...
- 机器学习——SVM详解(标准形式,对偶形式,Kernel及Soft Margin)
(写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手 ...
- SVM之Python实现
SVM Python实现 Python实现SVM的理论知识 SVM原始最优化问题: \[ min_{w,b,\xi}{1\over{2}}{||w||}^2 + C\sum_{i=1}^m\xi^{( ...
随机推荐
- Optimizing Java笔记:高级垃圾回收
原书地址:https://www.safaribooksonline.com/library/view/optimizing-java/9781492039259/ 感觉挺不错的一本书,断断续续在读. ...
- ArticleRemoveDelDialog【基于AlertDialog的回收删除对话框】
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 回收删除对话框,继承AlertDialog. 仿照钉钉的长按弹出的移除置顶对话框. 效果图 代码分析 继承AlertDialog: ...
- BannerDemo【图片轮播图控件】
版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 这里简单记录下一个开源库youth5201314/banner的运用.具体用法请阅读<youth5201314/banner& ...
- 补习系列(17)-springboot mongodb 内嵌数据库
目录 简介 一.使用 flapdoodle.embed.mongo A. 引入依赖 B. 准备测试类 C. 完善配置 D. 启动测试 细节 二.使用Fongo A. 引入框架 B. 准备测试类 C.业 ...
- 微信公众号开发C#系列-8、自定义菜单及菜单响应事件的处理
1.概述 自定义菜单能够帮助公众号丰富界面,让用户更好更快地理解公众号的功能.菜单分为默认菜单与个性化菜单.个性化菜单接口是为了帮助公众号实现灵活的业务运营,开发者可以通过该接口,让公众号的不同用户群 ...
- mysql_8.0.12环境配置
1. 官网下载mysql_8.0.12免安装包,解压到你存放的地方: 2. 配置环境变量(把bin的文件夹弄进系统path里面): 3. 在解压的根路径中,查看是否含有my.ini文件,没有就新建一个 ...
- 《C#并发编程经典实例》学习笔记—2.2 返回完成的任务
问题: 如何实现一个具有异步签名的同步方法. 从异步接口或基类继承代码,但希望用同步方式实现方法. 解释一下所谓的异步接口和异步基类.例如如下代码 interface IMyAsyncInterfac ...
- 物联网RFID技术之应用ETC系统
背景 信息物理系统CPS通过集成先进的感知.计算.通 信.控制等信息技术和自动控制技术,构建了物理空间与信息空间中人. 机.物.环境.信息等要素相互映射.适时交互.高效协同的复杂系统, 实现系统内资源 ...
- MySQL优化面试
原则:尽量使用整型表示字符串 存储IP INET_ATON(str),address to number INET_NTOA(number),number to address MySQL内部的枚举类 ...
- vue2.0 实现全选和全不选
实现思路: 1. v-model 一个收集所有input(除全选框外)数组checkModel ,vue会动态将其checked为true的input的value值存入数组checkModel里 2 ...