什么是kernel

Kernel的其实就是将向量feature转换与点积运算合并后的运算,如下,

概念上很简单,但是并不是所有的feature转换函数都有kernel的特性。

常见kernel

常见kernel有多项式,高斯和线性,各有利弊。

kernel SVM

在非线性的SVM算法中,如何将一组线性不可分的数据,利用从低维到高维的投射,使它变成在高维空间中线性可分的数据。将已经分割好的数据,投射回到原先的空间,及低维空间。

(1)一维空间

一维空间中的线性分类,找是否从在一个点,使一边都是红,一边都是绿,显然这样的线性分类器是不存在的。所以将数据投射到二维的空间里,例如:

                

(2)二维

投射,保持X1轴和X2轴不变,增加第三个轴,将X1,X2两个点投射到一个三维空间里,前两个维度不变,第三个z与X1,X2有关系;在新的三维空间里,绿色和红色就变成了线性可分。线性可分在不是二维的空间中,有一个超平面,将两组数据分开。

(3)反向投射

三维空间中找到的分割的平面,与数据本身结构,根据这两个信息,找出在原来数据空间二维空间中的分类界线。

核技巧在非线性SVM的应用

 

(1)非线性SVM最常用的核方程:

假设只有一个自变量X,而l已定,看成一个关于X的函数,此时的函数在空间中的形态

      l点就是(0,0)这个点

利用高斯核函数算出分类函数:

绿点所对应的高斯核函数的值,坐落在白色圈的里面(小山上);红点所对应的高斯核函数的值,坐落在周围深蓝色图像上。做出的投影图。

σ:控制圈的半径(大小)

     

(2)较复杂的二维

此时的核函数

实例

数据集

# Importing the libraries
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd # Importing the dataset
dataset = pd.read_csv('Social_Network_Ads.csv')
X = dataset.iloc[:, [2,3]].values
y = dataset.iloc[:, 4].values # Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0) # Feature Scaling
from sklearn.preprocessing import StandardScaler
sc_X = StandardScaler()
X_train = sc_X.fit_transform(X_train)
X_test = sc_X.transform(X_test) # Fitting Logistic Regression to the Training set
#训练集拟合SVM的分类器
#从模型的标准库中导入需要的类
from sklearn.svm import SVC
#创建分类器
classifier = SVC(kernel = 'rbf', random_state = 0)#rbf运用了高斯核
#运用训练集拟合分类器
classifier.fit(X_train, y_train) # Predicting the Test set results
#运用拟合好的分类器预测测试集的结果情况
#创建变量(包含预测出的结果)
y_pred = classifier.predict(X_test) # Making the Confusion Matrix
#通过测试的结果评估分类器的性能
#用混淆矩阵,评估性能
#65,24对应着正确的预测个数;8,3对应错误预测个数;拟合好的分类器正确率:(65+24)/100
from sklearn.metrics import confusion_matrix
cm = confusion_matrix(y_test, y_pred) # Visualising the Training set results
#在图像看分类结果
from matplotlib.colors import ListedColormap
#创建变量
X_set, y_set = X_train, y_train
#x1,x2对应图中的像素;最小值-1,最大值+1,-1和+1是为了让图的边缘留白,像素之间的距离0.01;第一行年龄,第二行年收入
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
#将不同像素点涂色,用拟合好的分类器预测每个点所属的分类并且根据分类值涂色
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
#标注最大值及最小值
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
#为了滑出实际观测的点(黄、蓝)
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('orange', 'blue'))(i), label = j)
plt.title('Classifier (Training set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
#显示不同的点对应的值
plt.legend()
#生成图像
plt.show() # Visualising the Test set results
from matplotlib.colors import ListedColormap
X_set, y_set = X_test, y_test
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
plt.xlim(X1.min(), X1.max())
plt.ylim(X2.min(), X2.max())
for i, j in enumerate(np.unique(y_set)):
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
c = ListedColormap(('orange', 'blue'))(i), label = j)
plt.title('Classifier (Test set)')
plt.xlabel('Age')
plt.ylabel('Estimated Salary')
plt.legend()
plt.show()

训练集图像显示结果:

测试集图像显示结果:

Python----Kernel SVM的更多相关文章

  1. Kernel Methods (4) Kernel SVM

    (本文假设你已经知道了hard margin SVM的基本知识.) 如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep lea ...

  2. Python实现SVM(支持向量机)

    Python实现SVM(支持向量机) 运行环境 Pyhton3 numpy(科学计算包) matplotlib(画图所需,不画图可不必) 计算过程 st=>start: 开始 e=>end ...

  3. 基于Python使用SVM识别简单的字符验证码的完整代码开源分享

    关键字:Python,SVM,字符验证码,机器学习,验证码识别 1   概述 基于Python使用SVM识别简单的验证字符串的完整代码开源分享. 因为目前有了更厉害的新技术来解决这类问题了,但是本文作 ...

  4. (转载)python应用svm算法过程

    除了在Matlab中使用PRTools工具箱中的svm算法,Python中一样可以使用支持向量机做分类.因为Python中的sklearn库也集成了SVM算法,本文的运行环境是Pycharm. 一.导 ...

  5. jupyter notebook添加Anaconda虚拟环境的python kernel

    之前在自己博客上写了一个如何通过自建配置文件,让jupyter notebook可以调用conda虚拟环境的python解释器. 今天介绍一种更加简单的方式,无需手动配置文件,利用ipykernel可 ...

  6. 基于jupyter lab搭建网页编程环境并添加自定义python kernel和matlab kernel以及plotly的使用

    内容转载自我的博客 目录 说明 1. 创建虚拟环境jupyter 2. 安装nodejs(用于jupyterlab安装扩展) 3. 安装pip包 4. 使用jupyterlab 5. 配置jupyte ...

  7. 【367】通过 python 实现 SVM 硬边界 算法

    参考: 支持向量机整理 SVM 硬边界的结果如下: $$min \quad \frac{1}{2} \sum_{i=1}^m\sum_{j=1}^m \alpha_i\alpha_jy_iy_j \v ...

  8. 机器学习经典算法详解及Python实现--基于SMO的SVM分类器

    原文:http://blog.csdn.net/suipingsp/article/details/41645779 支持向量机基本上是最好的有监督学习算法,因其英文名为support vector  ...

  9. 机器学习——SVM详解(标准形式,对偶形式,Kernel及Soft Margin)

    (写在前面:机器学习入行快2年了,多多少少用过一些算法,但由于敲公式太过浪费时间,所以一直搁置了开一个机器学习系列的博客.但是现在毕竟是电子化的时代,也不可能每时每刻都带着自己的记事本.如果可以掏出手 ...

  10. SVM之Python实现

    SVM Python实现 Python实现SVM的理论知识 SVM原始最优化问题: \[ min_{w,b,\xi}{1\over{2}}{||w||}^2 + C\sum_{i=1}^m\xi^{( ...

随机推荐

  1. Optimizing Java笔记:高级垃圾回收

    原书地址:https://www.safaribooksonline.com/library/view/optimizing-java/9781492039259/ 感觉挺不错的一本书,断断续续在读. ...

  2. ArticleRemoveDelDialog【基于AlertDialog的回收删除对话框】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 回收删除对话框,继承AlertDialog. 仿照钉钉的长按弹出的移除置顶对话框. 效果图 代码分析 继承AlertDialog: ...

  3. BannerDemo【图片轮播图控件】

    版权声明:本文为HaiyuKing原创文章,转载请注明出处! 前言 这里简单记录下一个开源库youth5201314/banner的运用.具体用法请阅读<youth5201314/banner& ...

  4. 补习系列(17)-springboot mongodb 内嵌数据库

    目录 简介 一.使用 flapdoodle.embed.mongo A. 引入依赖 B. 准备测试类 C. 完善配置 D. 启动测试 细节 二.使用Fongo A. 引入框架 B. 准备测试类 C.业 ...

  5. 微信公众号开发C#系列-8、自定义菜单及菜单响应事件的处理

    1.概述 自定义菜单能够帮助公众号丰富界面,让用户更好更快地理解公众号的功能.菜单分为默认菜单与个性化菜单.个性化菜单接口是为了帮助公众号实现灵活的业务运营,开发者可以通过该接口,让公众号的不同用户群 ...

  6. mysql_8.0.12环境配置

    1. 官网下载mysql_8.0.12免安装包,解压到你存放的地方: 2. 配置环境变量(把bin的文件夹弄进系统path里面): 3. 在解压的根路径中,查看是否含有my.ini文件,没有就新建一个 ...

  7. 《C#并发编程经典实例》学习笔记—2.2 返回完成的任务

    问题: 如何实现一个具有异步签名的同步方法. 从异步接口或基类继承代码,但希望用同步方式实现方法. 解释一下所谓的异步接口和异步基类.例如如下代码 interface IMyAsyncInterfac ...

  8. 物联网RFID技术之应用ETC系统

    背景 信息物理系统CPS通过集成先进的感知.计算.通 信.控制等信息技术和自动控制技术,构建了物理空间与信息空间中人. 机.物.环境.信息等要素相互映射.适时交互.高效协同的复杂系统, 实现系统内资源 ...

  9. MySQL优化面试

    原则:尽量使用整型表示字符串 存储IP INET_ATON(str),address to number INET_NTOA(number),number to address MySQL内部的枚举类 ...

  10. vue2.0 实现全选和全不选

    实现思路: 1. v-model 一个收集所有input(除全选框外)数组checkModel ,vue会动态将其checked为true的input的value值存入数组checkModel里 2 ...