The Fortified Forest
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6400   Accepted: 1808

Description

Once upon a time, in a faraway land, there lived a king. This king owned a small collection of rare and valuable trees, which had been gathered by his ancestors on their travels. To protect his trees from thieves, the king ordered that a high fence be built around them. His wizard was put in charge of the operation. 
Alas, the wizard quickly noticed that the only suitable material available to build the fence was the wood from the trees themselves. In other words, it was necessary to cut down some trees in order to build a fence around the remaining trees. Of course, to prevent his head from being chopped off, the wizard wanted to minimize the value of the trees that had to be cut. The wizard went to his tower and stayed there until he had found the best possible solution to the problem. The fence was then built and everyone lived happily ever after.

You are to write a program that solves the problem the wizard faced.

Input

The input contains several test cases, each of which describes a hypothetical forest. Each test case begins with a line containing a single integer n, 2 <= n <= 15, the number of trees in the forest. The trees are identified by consecutive integers 1 to n. Each of the subsequent n lines contains 4 integers xi, yi, vi, li that describe a single tree. (xi, yi) is the position of the tree in the plane, vi is its value, and li is the length of fence that can be built using the wood of the tree. vi and li are between 0 and 10,000. 
The input ends with an empty test case (n = 0). 

Output

For each test case, compute a subset of the trees such that, using the wood from that subset, the remaining trees can be enclosed in a single fence. Find the subset with minimum value. If more than one such minimum-value subset exists, choose one with the smallest number of trees. For simplicity, regard the trees as having zero diameter. 
Display, as shown below, the test case numbers (1, 2, ...), the identity of each tree to be cut, and the length of the excess fencing (accurate to two fractional digits).

Display a blank line between test cases.

Sample Input

6
0 0 8 3
1 4 3 2
2 1 7 1
4 1 2 3
3 5 4 6
2 3 9 8
3
3 0 10 2
5 5 20 25
7 -3 30 32
0

Sample Output

Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16 Forest 2
Cut these trees: 2
Extra wood: 15.00

Source

 

题意:每棵树坐标价值长度,砍掉一些树把剩下的围起来,最小价值最小数量问砍掉了那些树以及剩下的长度

二进制枚举然后把没砍的扔一起求凸包行了
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=,INF=1e9;
const double eps=1e-;
const double pi=acos(-); inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
} struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
//return x<a.x||(x==a.x&&y<a.y);
return sgn(x-a.x)<||(sgn(x-a.x)==&&sgn(y-a.y)<);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
double DisPP(Point a,Point b){
Point t=b-a;
return sqrt(t.x*t.x+t.y*t.y);
} int cas=;
int n,x,y,v[N],l[N];
double ans;
Point p[N],ch[N],rp[N];
int rn; double ConvexHull(Point p[],int n,Point ch[]){
sort(p+,p++n);
int m=,cnt=;
for(int i=;i<=n;i++) {
while(m>&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
int k=m;
for(int i=n-;i>=;i--) {
while(m>k&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
if(n>) m--;
double ans=;
for(int i=;i<=m;i++) ans+=DisPP(ch[i],ch[i%m+]);
return ans;
} void solve(){
int ansV=INF,ansS=,ansCnt=INF,S=(<<n);
double extra;
for(int i=;i<S;i++){
double len=;
int val=,cnt;
rn=;
for(int j=;j<n;j++){
if(i&(<<j)){
j++;
len+=l[j],val+=v[j],cnt++;
j--;
}else rp[++rn]=p[j+];
}
if(val>ansV||(val==ansV&&cnt>ansCnt)) continue;
double peri=ConvexHull(rp,rn,ch);
if(sgn(peri-len)>) continue;
if(val<ansV||(val==ansV&&cnt<ansCnt)){
ansV=val;
ansS=i;
ansCnt=cnt;
extra=len-peri;
}
}
printf("Forest %d\nCut these trees: ",++cas);
for(int j=;j<=;j++) if(ansS&(<<j)) printf("%d ",j+);
printf("\nExtra wood: ");
printf("%.2f\n\n",extra);
} int main(int argc, const char * argv[]) {
while(scanf("%d",&n)!=EOF&&n){
for(int i=;i<=n;i++) p[i].x=read(),p[i].y=read(),v[i]=read(),l[i]=read();
solve();
}
return ;
}
 

POJ 1873 The Fortified Forest [凸包 枚举]的更多相关文章

  1. POJ 1873 The Fortified Forest(枚举+凸包)

    Description Once upon a time, in a faraway land, there lived a king. This king owned a small collect ...

  2. POJ 1873 The Fortified Forest 凸包 二进制枚举

    n最大15,二进制枚举不会超时.枚举不被砍掉的树,然后求凸包 #include<stdio.h> #include<math.h> #include<algorithm& ...

  3. POJ 1873 - The Fortified Forest 凸包 + 搜索 模板

    通过这道题发现了原来写凸包的一些不注意之处和一些错误..有些错误很要命.. 这题 N = 15 1 << 15 = 32768 直接枚举完全可行 卡在异常情况判断上很久,只有 顶点数 &g ...

  4. poj1873 The Fortified Forest 凸包+枚举 水题

    /* poj1873 The Fortified Forest 凸包+枚举 水题 用小树林的木头给小树林围一个围墙 每棵树都有价值 求消耗价值最低的做法,输出被砍伐的树的编号和剩余的木料 若砍伐价值相 ...

  5. ●POJ 1873 The Fortified Forest

    题链: http://poj.org/problem?id=1873 题解: 计算几何,凸包 枚举被砍的树的集合.求出剩下点的凸包.然后判断即可. 代码: #include<cmath> ...

  6. 简单几何(凸包+枚举) POJ 1873 The Fortified Forest

    题目传送门 题意:砍掉一些树,用它们做成篱笆把剩余的树围起来,问最小价值 分析:数据量不大,考虑状态压缩暴力枚举,求凸包以及计算凸包长度.虽说是水题,毕竟是final,自己状压的最大情况写错了,而且忘 ...

  7. POJ 1873 The Fortified Forest(凸包)题解

    题意:二维平面有一堆点,每个点有价值v和删掉这个点能得到的长度l,问你删掉最少的价值能把剩余点围起来,价值一样求删掉的点最少 思路:n<=15,那么直接遍历2^15,判断每种情况.这里要优化一下 ...

  8. POJ 1873 The Fortified Forest

    题意:是有n棵树,每棵的坐标,价值和长度已知,要砍掉若干根,用他们围住其他树,问损失价值最小的情况下又要长度足够围住其他树,砍掉哪些树.. 思路:先求要砍掉的哪些树,在求剩下的树求凸包,在判是否可行. ...

  9. Uva5211/POJ1873 The Fortified Forest 凸包

    LINK 题意:给出点集,每个点有个价值v和长度l,问把其中几个点取掉,用这几个点的长度能把剩下的点围住,要求剩下的点价值和最大,拿掉的点最少且剩余长度最长. 思路:1999WF中的水题.考虑到其点的 ...

随机推荐

  1. Linux 用户组及用户管理

    查看所有组的信息:(信息保存在/etc/group文件中) 其中每段信息用:分割 ,每段的含义如下: 用户名组名:密码:用户组的id:用户组所包含的用户(多个用户用,分割) 查看所有的用户信息:(信息 ...

  2. Linux 离线安装Rubygems详解

    很多时候我们会发现,真实的生成环境很多都没有外网,只有内网环境,这个时候我们又需要安装RubyGems,则不能提供yum命令进行在线安装了,这个时候我们就需要下载安装包进行离线安装.本文主要简单介绍如 ...

  3. Web前端:改变鼠标样式

    <span style="cursor:auto">浏览器设置的光标</span><br /> <span style="cur ...

  4. VN问题:error:请求的名称有效,但是找不到请求的类型的

    把url中的jmsjms-pc换成IP地址试试看 IP地址你用的是外网地址,应该用局域网内网地址,改成内网地址再试试看 还有练习架设SVN服务器初期尽量用http协议,不要上来就用https协议,ht ...

  5. 把VueThink整合到已有ThinkPHP 5.0项目中

     享 关键字: VueThink ThinkPHP5.0 Vue2.x TP5 管理后台扩展 VueThink初认识 VueThink,是一个很不错的技术框架,由广州洪睿科技的技术团队2016年研发( ...

  6. Redis 数据结构与内存管理策略(下)

    Redis 数据结构与内存管理策略(下) 标签: Redis Redis数据结构 Redis内存管理策略 Redis数据类型 Redis类型映射 Redis 数据类型特点与使用场景 String.Li ...

  7. shareInstance

    2.+(id)shareInstance; 外界初始化得到单例类对象的唯一借口,这个类方法返回的就是instance,即类的一个对象, 如果instance为空,则实例化一个对象,如果不为空,则直接返 ...

  8. Tomcat下的Server.xml配置文件详解

    自15年毕业到现在已经入行两年多了,一直以来没有深入的了解过tomcat的详细配置,只懂修改一下端口号.在网上找了些相关资料来支撑这篇文章,深入了解server.xml文件各配置的作用 <?xm ...

  9. Java进阶篇(六)——Swing程序设计(上)

    Swing是GUI(图形用户界面)开发工具包,内容有很多,这里会分块编写,但在进阶篇中只编写Swing中的基本要素,包括容器.组件和布局等,更深入的内容会在高级篇中出现.想深入学习的朋友们可查阅有关资 ...

  10. 如何使用 volatile, synchronized, final 进行线程间通信

    原文地址:https://segmentfault.com/a/1190000004487149.感谢作者的无私分享. 你是否真正理解并会用volatile, synchronized, final进 ...