The Fortified Forest
Time Limit: 1000MS   Memory Limit: 30000K
Total Submissions: 6400   Accepted: 1808

Description

Once upon a time, in a faraway land, there lived a king. This king owned a small collection of rare and valuable trees, which had been gathered by his ancestors on their travels. To protect his trees from thieves, the king ordered that a high fence be built around them. His wizard was put in charge of the operation. 
Alas, the wizard quickly noticed that the only suitable material available to build the fence was the wood from the trees themselves. In other words, it was necessary to cut down some trees in order to build a fence around the remaining trees. Of course, to prevent his head from being chopped off, the wizard wanted to minimize the value of the trees that had to be cut. The wizard went to his tower and stayed there until he had found the best possible solution to the problem. The fence was then built and everyone lived happily ever after.

You are to write a program that solves the problem the wizard faced.

Input

The input contains several test cases, each of which describes a hypothetical forest. Each test case begins with a line containing a single integer n, 2 <= n <= 15, the number of trees in the forest. The trees are identified by consecutive integers 1 to n. Each of the subsequent n lines contains 4 integers xi, yi, vi, li that describe a single tree. (xi, yi) is the position of the tree in the plane, vi is its value, and li is the length of fence that can be built using the wood of the tree. vi and li are between 0 and 10,000. 
The input ends with an empty test case (n = 0). 

Output

For each test case, compute a subset of the trees such that, using the wood from that subset, the remaining trees can be enclosed in a single fence. Find the subset with minimum value. If more than one such minimum-value subset exists, choose one with the smallest number of trees. For simplicity, regard the trees as having zero diameter. 
Display, as shown below, the test case numbers (1, 2, ...), the identity of each tree to be cut, and the length of the excess fencing (accurate to two fractional digits).

Display a blank line between test cases.

Sample Input

6
0 0 8 3
1 4 3 2
2 1 7 1
4 1 2 3
3 5 4 6
2 3 9 8
3
3 0 10 2
5 5 20 25
7 -3 30 32
0

Sample Output

Forest 1
Cut these trees: 2 4 5
Extra wood: 3.16 Forest 2
Cut these trees: 2
Extra wood: 15.00

Source

 

题意:每棵树坐标价值长度,砍掉一些树把剩下的围起来,最小价值最小数量问砍掉了那些树以及剩下的长度

二进制枚举然后把没砍的扔一起求凸包行了
 
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <vector>
using namespace std;
typedef long long ll;
const int N=,INF=1e9;
const double eps=1e-;
const double pi=acos(-); inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-; c=getchar();}
while(c>=''&&c<=''){x=x*+c-''; c=getchar();}
return x*f;
} inline int sgn(double x){
if(abs(x)<eps) return ;
else return x<?-:;
} struct Vector{
double x,y;
Vector(double a=,double b=):x(a),y(b){}
bool operator <(const Vector &a)const{
//return x<a.x||(x==a.x&&y<a.y);
return sgn(x-a.x)<||(sgn(x-a.x)==&&sgn(y-a.y)<);
}
};
typedef Vector Point;
Vector operator +(Vector a,Vector b){return Vector(a.x+b.x,a.y+b.y);}
Vector operator -(Vector a,Vector b){return Vector(a.x-b.x,a.y-b.y);}
Vector operator *(Vector a,double b){return Vector(a.x*b,a.y*b);}
Vector operator /(Vector a,double b){return Vector(a.x/b,a.y/b);}
bool operator ==(Vector a,Vector b){return sgn(a.x-b.x)==&&sgn(a.y-b.y)==;} double Dot(Vector a,Vector b){return a.x*b.x+a.y*b.y;}
double Cross(Vector a,Vector b){return a.x*b.y-a.y*b.x;}
double DisPP(Point a,Point b){
Point t=b-a;
return sqrt(t.x*t.x+t.y*t.y);
} int cas=;
int n,x,y,v[N],l[N];
double ans;
Point p[N],ch[N],rp[N];
int rn; double ConvexHull(Point p[],int n,Point ch[]){
sort(p+,p++n);
int m=,cnt=;
for(int i=;i<=n;i++) {
while(m>&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
int k=m;
for(int i=n-;i>=;i--) {
while(m>k&&sgn(Cross(ch[m]-ch[m-],p[i]-ch[m-]))<=) m--;
ch[++m]=p[i];
}
if(n>) m--;
double ans=;
for(int i=;i<=m;i++) ans+=DisPP(ch[i],ch[i%m+]);
return ans;
} void solve(){
int ansV=INF,ansS=,ansCnt=INF,S=(<<n);
double extra;
for(int i=;i<S;i++){
double len=;
int val=,cnt;
rn=;
for(int j=;j<n;j++){
if(i&(<<j)){
j++;
len+=l[j],val+=v[j],cnt++;
j--;
}else rp[++rn]=p[j+];
}
if(val>ansV||(val==ansV&&cnt>ansCnt)) continue;
double peri=ConvexHull(rp,rn,ch);
if(sgn(peri-len)>) continue;
if(val<ansV||(val==ansV&&cnt<ansCnt)){
ansV=val;
ansS=i;
ansCnt=cnt;
extra=len-peri;
}
}
printf("Forest %d\nCut these trees: ",++cas);
for(int j=;j<=;j++) if(ansS&(<<j)) printf("%d ",j+);
printf("\nExtra wood: ");
printf("%.2f\n\n",extra);
} int main(int argc, const char * argv[]) {
while(scanf("%d",&n)!=EOF&&n){
for(int i=;i<=n;i++) p[i].x=read(),p[i].y=read(),v[i]=read(),l[i]=read();
solve();
}
return ;
}
 

POJ 1873 The Fortified Forest [凸包 枚举]的更多相关文章

  1. POJ 1873 The Fortified Forest(枚举+凸包)

    Description Once upon a time, in a faraway land, there lived a king. This king owned a small collect ...

  2. POJ 1873 The Fortified Forest 凸包 二进制枚举

    n最大15,二进制枚举不会超时.枚举不被砍掉的树,然后求凸包 #include<stdio.h> #include<math.h> #include<algorithm& ...

  3. POJ 1873 - The Fortified Forest 凸包 + 搜索 模板

    通过这道题发现了原来写凸包的一些不注意之处和一些错误..有些错误很要命.. 这题 N = 15 1 << 15 = 32768 直接枚举完全可行 卡在异常情况判断上很久,只有 顶点数 &g ...

  4. poj1873 The Fortified Forest 凸包+枚举 水题

    /* poj1873 The Fortified Forest 凸包+枚举 水题 用小树林的木头给小树林围一个围墙 每棵树都有价值 求消耗价值最低的做法,输出被砍伐的树的编号和剩余的木料 若砍伐价值相 ...

  5. ●POJ 1873 The Fortified Forest

    题链: http://poj.org/problem?id=1873 题解: 计算几何,凸包 枚举被砍的树的集合.求出剩下点的凸包.然后判断即可. 代码: #include<cmath> ...

  6. 简单几何(凸包+枚举) POJ 1873 The Fortified Forest

    题目传送门 题意:砍掉一些树,用它们做成篱笆把剩余的树围起来,问最小价值 分析:数据量不大,考虑状态压缩暴力枚举,求凸包以及计算凸包长度.虽说是水题,毕竟是final,自己状压的最大情况写错了,而且忘 ...

  7. POJ 1873 The Fortified Forest(凸包)题解

    题意:二维平面有一堆点,每个点有价值v和删掉这个点能得到的长度l,问你删掉最少的价值能把剩余点围起来,价值一样求删掉的点最少 思路:n<=15,那么直接遍历2^15,判断每种情况.这里要优化一下 ...

  8. POJ 1873 The Fortified Forest

    题意:是有n棵树,每棵的坐标,价值和长度已知,要砍掉若干根,用他们围住其他树,问损失价值最小的情况下又要长度足够围住其他树,砍掉哪些树.. 思路:先求要砍掉的哪些树,在求剩下的树求凸包,在判是否可行. ...

  9. Uva5211/POJ1873 The Fortified Forest 凸包

    LINK 题意:给出点集,每个点有个价值v和长度l,问把其中几个点取掉,用这几个点的长度能把剩下的点围住,要求剩下的点价值和最大,拿掉的点最少且剩余长度最长. 思路:1999WF中的水题.考虑到其点的 ...

随机推荐

  1. Sass嵌套

    Sass 中还提供了选择器嵌套功能,但这也并不意味着你在 Sass 中的嵌套是无节制的,因为你嵌套的层级越深,编译出来的 CSS 代码的选择器层级将越深,这往往是大家不愿意看到的一点. 选择器嵌套为样 ...

  2. HDU 5912 Fraction(模拟——分子式化简求解)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5912 Problem Description Mr. Frog recently studied h ...

  3. vmstat & mpstat & w

    vmstat # vmstat 3 2procs -----------memory---------- ---swap-- -----io---- --system-- -----cpu----- ...

  4. 从零开始学习前端开发 — 10、HTML5新标签及表单控件属性和属性值

    一.html5新增标签 1.结构性标签 header 定义网页的头部 nav 定义网页的导航 footer 定义网页的底部 section 定义网页的某个区域 article 定义网页中的一篇文章 a ...

  5. 解决DEDECMS Call to undefined function dede_htmlspecialchars()

    作者:DEDECMS建站网 关注: 3610 时间:2015-11-18 16:39 内容详情 以下内容您可能感兴趣: 织梦官方在2015年6月18日更新了织梦5.7,为了兼容php5.4+,修改了/ ...

  6. Aliase_小白学Python_Day0_前言

    听到有老师介绍,说你为什么不把你的学习过程保存下来,一是当做总结,二是作为分享.我想,也对.这算是我的第一个博客,本次想写写我为什么选择学习Python. 很多人都问过我一个问题,行业那么多,你为什么 ...

  7. Linux的运行级别详细说明

    Linux 7个运行级别    # 0 - 停机(千万不要把initdefault设置为0 )     # 1 - 单用户模式     # 2 - 多用户,但是没有NFS     # 3 - 完全多用 ...

  8. jquery mobile-按钮控件

    jQuery Mobile 中的按钮会自动获得样式,这增强了他们在移动设备上的交互性和可用性.我们推荐您使用 data-role="button" 的 <a> 元素来创 ...

  9. 强大的Cmder

    why 漂亮,包装并美化了各个shell 带task功能,能记忆,能执行脚本 配合win10的bash,能实现类似xshell的功能 注意点 需要注意的一点,Cmder来源于另外一个项目ConEmu, ...

  10. 洛谷 P1231 教辅的组成

    P1231 教辅的组成 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习 ...