200ms的板子,我尽力了,以我自己的能力没法再快了。。。

基于Kruskal的做法,跑了200ms,以我自己的能力没办法再快了,不过翻了几页评测列表发现我是最快的。。。我觉得应该会有更快的方法。
想法很简单,既然是最小生成树,把所有边按照边权升序排序,每次取一条最小权值的边,询问是否不在同一集合,如果不在,则最小生成树中就会有这条边,然后合并边所在的集合。生成树连接n个点,显然有n-1条边,所以开一个totedge来维护当前取到的边数,直到取完n-1条边为止。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 5005
#define maxm 200005
using namespace std;
struct Edge{
int from,to,dis;
bool operator <(const Edge &rhs)const{
return dis < rhs.dis;
}
};
Edge edge[maxm];
int father[maxm];
int n,m;
int totedge = ;
int k = ;
int ans = ;
inline int read(){
int num = ;
char c;
bool flag = false;
while ((c = getchar()) == ' ' || c == '\n' || c == '\r');
if (c == '-')
flag = true;
else
num = c - '';
while (isdigit(c = getchar()))
num = num * + c - '';
return (flag ? - : ) * num;
}
void init(){
for (register int i=;i<=m;i++)
father[i] = i;
}
int find(int x){
if (father[x] == x)
return father[x];
father[x] = find(father[x]);
return father[x];
} void merge(int x,int y){
father[find(x)] = find(y);
} int main(){
n = read();m = read();
for (register int i=;i<=m;i++){
edge[i].from = read();
edge[i].to = read();
edge[i].dis = read();
}
sort(edge+,edge+m+);
init();
while (totedge < n-){
if (find(edge[++k].from) != find(edge[k].to)){
ans += edge[k].dis;
merge(edge[k].from,edge[k].to);
totedge++;
}
}
printf("%d\n",ans);
return ;
}

自用最小生成树模板(基于Kruskal)的更多相关文章

  1. 最小生成树模板【kruskal & prim】

    CDOJ 1966 Kruskal 解法 时间复杂度O(mlogm) m为边数,这里主要是边排序占时间,后面并查集还好 #include <cstdio> #include <cst ...

  2. 最小生成树(次小生成树)(最小生成树不唯一) 模板:Kruskal算法和 Prim算法

    Kruskal模板:按照边权排序,开始从最小边生成树 #include<algorithm> #include<stdio.h> #include<string.h> ...

  3. luogu p3366 最小生成树模板

    倒腾了一个小时  自己也没去看网上的 总算自己能写出来模板了 kruskal //最小生成树 每次找最短的边 #include<bits/stdc++.h> using namespace ...

  4. poj 1258 最小生成树 模板

    POJ 最小生成树模板 Kruskal算法 #include<iostream> #include<algorithm> #include<stdio.h> #in ...

  5. POJ-图论-最小生成树模板

    POJ-图论-最小生成树模板 Kruskal算法 1.初始时所有结点属于孤立的集合. 2.按照边权递增顺序遍历所有的边,若遍历到的边两个顶点仍分属不同的集合(该边即为连通这两个集合的边中权值最小的那条 ...

  6. 最小生成树之Prim Kruskal算法(转)

    最小生成树 首先,生成树是建立在无向图中的,对于有向图,则没有生成树的概念,所以接下来讨论的图均默认为无向图.对于一个有n个点的图,最少需要n-1条边使得这n个点联通,由这n-1条边组成的子图则称为原 ...

  7. 畅通工程 HDU - 1863 最小生成树模板

    两个模板: kruskal #include<stdio.h> #include<queue> #include<algorithm> #include<io ...

  8. 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题

    链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...

  9. Prime算法 与 Kruskal算法求最小生成树模板

    算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...

随机推荐

  1. Exponentiation(java 大实数)

    http://acm.hdu.edu.cn/showproblem.php?pid=1063 Exponentiation Time Limit: 2000/500 MS (Java/Others)  ...

  2. struts中用kindeditor实现的图片上传并且显示在页面上

    做公司网站的时候由于需要在内容属性中加入图片,所以就有了这个问题,本来一开始找几篇文章看都是讲修改kindeditor/jsp/file_manager_json.jsp和upload_json.js ...

  3. 前端自动化-----gulp详细入门(转)

    简介: gulp是前端开发过程中对代码进行构建的工具,是自动化项目的构建利器:她不仅能对网站资源进行优化,而且在开发过程中很多重复的任务能够使用正确的工具自动完成:使用她,我们不仅可以很愉快的编写代码 ...

  4. Oracle:对表的CREATE、ALTER、INSERT、RENAME、DELETE操作练习以及主外键约束

    -创建一个student表,设定表的主键为学号CREATE TABLE student( sno VARCHAR2(10) PRIMARY KEY, --列级约束 sno VARCHAR2(20) C ...

  5. Struts 2 标签库及使用

    1  Struts 2 基本的标签属性. 1) name:指定表单元素的名称,该属性与Action中定义的属性相对应. 2) value:指定表单元素的值. 3) required:指定表单元素的必填 ...

  6. 【原创】区分png图片格式和apng图片格式的解决办法

    最近公司有个项目,要抓取客户微信公众号的文章,以及文章内容中的图片,并且在图片加上客户自己的水印.我们使用阿里云OSS存储图片和加水印,发现真心好用,提升了我们的开发效率,阿里云现在是越来越强大了.. ...

  7. linux_mount相关故障

    fstab修改错误导致系统无法启动故障修复方案 1. 维护模式或救援模式 2. mount -o rw,remount 挂载点 # 这个方式也可以解决有些分区只能读的故障 3. 然后修改 /etc/f ...

  8. Log4j源码解析--Appender接口解析

    本文转自上善若水的博客,原文出处:http://www.blogjava.net/DLevin/archive/2012/07/10/382676.html.感谢作者的无私的分享. Appender负 ...

  9. mysql关于char和varchar的查询效率问题

    看了好多资料都说 varchar(size) 可变长度的字符值,节省空间,查询效率低 char(size) 固定长度的字符值,浪费空间,查询效率高 但是实际测试  char(100)   varcha ...

  10. JDBC (五)

    1 使用dbutils进行一对多.多对多的开发 1.1 准备 mysql驱动的pom.xml <!-- https://mvnrepository.com/artifact/mysql/mysq ...