200ms的板子,我尽力了,以我自己的能力没法再快了。。。

基于Kruskal的做法,跑了200ms,以我自己的能力没办法再快了,不过翻了几页评测列表发现我是最快的。。。我觉得应该会有更快的方法。
想法很简单,既然是最小生成树,把所有边按照边权升序排序,每次取一条最小权值的边,询问是否不在同一集合,如果不在,则最小生成树中就会有这条边,然后合并边所在的集合。生成树连接n个点,显然有n-1条边,所以开一个totedge来维护当前取到的边数,直到取完n-1条边为止。

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define maxn 5005
#define maxm 200005
using namespace std;
struct Edge{
int from,to,dis;
bool operator <(const Edge &rhs)const{
return dis < rhs.dis;
}
};
Edge edge[maxm];
int father[maxm];
int n,m;
int totedge = ;
int k = ;
int ans = ;
inline int read(){
int num = ;
char c;
bool flag = false;
while ((c = getchar()) == ' ' || c == '\n' || c == '\r');
if (c == '-')
flag = true;
else
num = c - '';
while (isdigit(c = getchar()))
num = num * + c - '';
return (flag ? - : ) * num;
}
void init(){
for (register int i=;i<=m;i++)
father[i] = i;
}
int find(int x){
if (father[x] == x)
return father[x];
father[x] = find(father[x]);
return father[x];
} void merge(int x,int y){
father[find(x)] = find(y);
} int main(){
n = read();m = read();
for (register int i=;i<=m;i++){
edge[i].from = read();
edge[i].to = read();
edge[i].dis = read();
}
sort(edge+,edge+m+);
init();
while (totedge < n-){
if (find(edge[++k].from) != find(edge[k].to)){
ans += edge[k].dis;
merge(edge[k].from,edge[k].to);
totedge++;
}
}
printf("%d\n",ans);
return ;
}

自用最小生成树模板(基于Kruskal)的更多相关文章

  1. 最小生成树模板【kruskal & prim】

    CDOJ 1966 Kruskal 解法 时间复杂度O(mlogm) m为边数,这里主要是边排序占时间,后面并查集还好 #include <cstdio> #include <cst ...

  2. 最小生成树(次小生成树)(最小生成树不唯一) 模板:Kruskal算法和 Prim算法

    Kruskal模板:按照边权排序,开始从最小边生成树 #include<algorithm> #include<stdio.h> #include<string.h> ...

  3. luogu p3366 最小生成树模板

    倒腾了一个小时  自己也没去看网上的 总算自己能写出来模板了 kruskal //最小生成树 每次找最短的边 #include<bits/stdc++.h> using namespace ...

  4. poj 1258 最小生成树 模板

    POJ 最小生成树模板 Kruskal算法 #include<iostream> #include<algorithm> #include<stdio.h> #in ...

  5. POJ-图论-最小生成树模板

    POJ-图论-最小生成树模板 Kruskal算法 1.初始时所有结点属于孤立的集合. 2.按照边权递增顺序遍历所有的边,若遍历到的边两个顶点仍分属不同的集合(该边即为连通这两个集合的边中权值最小的那条 ...

  6. 最小生成树之Prim Kruskal算法(转)

    最小生成树 首先,生成树是建立在无向图中的,对于有向图,则没有生成树的概念,所以接下来讨论的图均默认为无向图.对于一个有n个点的图,最少需要n-1条边使得这n个点联通,由这n-1条边组成的子图则称为原 ...

  7. 畅通工程 HDU - 1863 最小生成树模板

    两个模板: kruskal #include<stdio.h> #include<queue> #include<algorithm> #include<io ...

  8. 洛谷P3366【模板】最小生成树-克鲁斯卡尔Kruskal算法详解附赠习题

    链接 题目描述 如题,给出一个无向图,求出最小生成树,如果该图不连通,则输出orz 输入输出格式 输入格式: 第一行包含两个整数N.M,表示该图共有N个结点和M条无向边.(N<=5000,M&l ...

  9. Prime算法 与 Kruskal算法求最小生成树模板

    算法原理参考链接 ==> UESTC算法讲堂——最小生成树 关于两种算法的复杂度分析 ==> http://blog.csdn.net/haskei/article/details/531 ...

随机推荐

  1. c# base 和this 继承

    父类的构造函数总是在子类之前执行的.既先初始化静态构造函数,后初始化子类构造函数. public class BaseCircle { public BaseCircle() { Console.Wr ...

  2. Vue中的$set的使用

    在我们使用vue进行开发的过程中,可能会遇到一种情况:当生成vue实例后,当再次给数据赋值时,有时候并不会自动更新到视图上去: 当我们去看vue文档的时候,会发现有这么一句话:如果在实例创建之后添加新 ...

  3. vuex的使用

    vue现在越来越火,不单单可以写简单的小项目,也可以写大中型的项目.但是项目大了,项目之间的数据传递就会变得复杂,那么问题来了?在一个大型项目中,多个组件要公用同一个或多个数据,我们如何保证每个组件获 ...

  4. hbase性能调优_表设计案例

    hbase性能调优案例 1.人员-角色   人员有多个角色  角色优先级   角色有多个人员   人员 删除添加角色   角色 可以添加删除人员   人员 角色 删除添加   设计思路 person表 ...

  5. Cookie实现--用户上次访问时间

    用户上次访问时间  

  6. Version 1.7.0_80 of the JVM is not suitable for this product.Version: 1.8 or greater is required.

    Eclipse启动失败,设置eclipse启动jdk有2种方法 第一种: 直接安装eclipse对应的jdk版本,并设置环境变量 第二种: 修改eclipse配置文件eclipse.ini 在plug ...

  7. Java Reflection(getXXX和getDeclaredXXX)

    package com.sunchao.reflection; public class Person { private int age ; private String name; public ...

  8. Jade报错:Invalid indentation,you can use tabs or spaces but not both问题

    现象:通过html生成jade文件之后,更改jade文件时,语句没什么问题的情况下,jade文件编译不通过,报错:Invalid indentation,you can use tabs or spa ...

  9. 高质量JAVA代码编写规范

    1. Java 命名约定 除了以下几个特例之外,命名时应始终采用完整的英文描述符.此外,一般应采用小写字母,但类名.接口名以及任何非初始单词的第一个字母要大写. 1.1 一般概念 * 尽量使用完整的英 ...

  10. (1-1)SpringCloud-Eureka:服务的注册与发现

    SpringCloud Eureka是SpringCloud Netflix服务套件中的一部分,它基于Netflix Eureka做了二次封装,主要负责完成微服务架构中的服务治理功能.下面来做一个示例 ...