1023 石子归并 V3
基准时间限制:2 秒 空间限制:131072 KB 分值: 320 难度:7级算法题

N堆石子摆成一条线。现要将石子有次序地合并成一堆。规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合并的代价。计算将N堆石子合并成一堆的最小代价。
 
例如: 1 2 3 4,有不少合并方法
1 2 3 4 => 3 3 4(3) => 6 4(9) => 10(19)
1 2 3 4 => 1 5 4(5) => 1 9(14) => 10(24)
1 2 3 4 => 1 2 7(7) => 3 7(10) => 10(20)
 
括号里面为总代价可以看出,第一种方法的代价最低,现在给出n堆石子的数量,计算最小合并代价。
 
Input
第1行:N(2 <= N <= 50000)
第2 - N + 1:N堆石子的数量(1 <= A[i] <= 10000)
Output
输出最小合并代价
Input示例
4
1
2
3
4
Output示例
19
/*
51 nod 1023 石子归并 V3(GarsiaWachs算法) problem:
给你n个石碓,相邻两个可以合并代价是它们的和. 求总体的最小代价 参考:
http://blog.sina.com.cn/s/blog_a825ada90101no1m.html
这博客解释不错,但仍不是很懂这个算法的原理 T T. hhh-2016/09/05-21:14:18
*/
#pragma comment(linker,"/STACK:124000000,124000000")
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstdio>
#include <cstring>
#include <vector>
#include <math.h>
#include <queue>
#include <set>
#include <map>
#define lson i<<1
#define rson i<<1|1
#define ll long long
#define clr(a,b) memset(a,b,sizeof(a))
#define scanfi(a) scanf("%d",&a)
#define scanfs(a) scanf("%s",a)
#define scanfl(a) scanf("%I64d",&a)
#define scanfd(a) scanf("%lf",&a)
#define key_val ch[ch[root][1]][0]
#define eps 1e-7
#define inf 0x3f3f3f3f3f3f3f3f
using namespace std;
const ll mod = 1000000007;
const int maxn = 50050;
const double PI = acos(-1.0); ll t[maxn];
ll ans;
int num;
void dfs(int cur)
{
ll tval = t[cur-1] + t[cur];
ans = ans+(ll)tval;
for(int i = cur;i < num-1;i++)
t[i] = t[i+1];
int k;
num --;
for(k = cur-1;k >= 1 && t[k-1] < tval;k--)
{
t[k] = t[k-1];
}
t[k] = tval; while(k >= 2 && t[k] >= t[k-2])
{
int len = num-k;
dfs(k-1);
k = num - len; }
} int main(){
int n;
while(scanfi(n)!=EOF){
// clr(t,inf);
for(int i =0 ;i < n;i++)
scanfi(t[i]);
ans = 0;
num = 1;
for(int i =1;i < n;i++)
{
t[num ++ ] = t[i];
while(num >= 3 && t[num-3] <= t[num-1])
dfs(num-2);
}
while(num > 1) dfs(num-1);
printf("%I64d\n",ans);
}
return 0;
}

  

51 nod 1023 石子归并 V3(GarsiaWachs算法)的更多相关文章

  1. NYOJ 737---石子归并(GarsiaWachs算法)

    原题链接 描述    有N堆石子排成一排,每堆石子有一定的数量.现要将N堆石子并成为一堆.合并的过程只能每次将相邻的两堆石子堆成一堆,每次合并花费的代价为这两堆石子的和,经过N-1次合并后成为一堆.求 ...

  2. POJ 1738 石子合并2 GarsiaWachs算法

    石子合并(GarsiaWachs算法) 只能用该算法过!!! 详解看代码 //#pragma comment(linker, "/STACK:167772160")//手动扩栈~~ ...

  3. 51 Nod 1068 Bash游戏v3

    1068 Bash游戏 V3  题目来源: Ural 1180 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题  收藏  关注 有一堆石子共有N个.A B两个人轮流 ...

  4. 51 nod 1212 无向图最小生成树(Kruckal算法/Prime算法图解)

    1212 无向图最小生成树 N个点M条边的无向连通图,每条边有一个权值,求该图的最小生成树. 收起 输入 第1行:2个数N,M中间用空格分隔,N为点的数量,M为边的数量.(2 <= N < ...

  5. 【BZOJ 3229】 3229: [Sdoi2008]石子合并 (GarsiaWachs算法)

    3229: [Sdoi2008]石子合并 Description 在一个操场上摆放着一排N堆石子.现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆石子合并成新的一堆,并将新的一堆石子数记为该次合 ...

  6. 51 Nod 1091 线段的重叠 (贪心算法)

    原题链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1091 思路分析:通过读题不难发现这是一道涉及贪心算法的题,刚 ...

  7. 51 NOD 1238 最小公倍数之和 V3

    原题链接 最近被51NOD的数论题各种刷……(NOI快到了我在干什么啊! 然后发现这题在网上找不到题解……那么既然A了就来骗一波访问量吧…… (然而并不怎么会用什么公式编辑器,写得丑也凑合着看吧…… ...

  8. 51 nod 1200 石子游戏V2 FWT

    放模板 #include<bits/stdc++.h> #define N 100005 using namespace std; const int p = 1000000007; in ...

  9. 51 Nod 1238 最小公倍数之和 V3 杜教筛

    题目链接:http://www.51nod.com/Challenge/Problem.html#!#problemId=1238 题意:求$\sum_{i=1}^{n}\sum_{j=1}^{n}l ...

随机推荐

  1. Django 模版语法

    一.简介 模版是纯文本文件.它可以产生任何基于文本的的格式(HTML,XML,CSV等等). 模版包括在使用时会被值替换掉的 变量,和控制模版逻辑的 标签. {% extends "base ...

  2. Struts2之配置文件中Action的详细配置

    在Struts2之配置一文中,我们知道一个struts配置文件可以分为三部分:常量配置    包含其他配置文件的配置    Action配置  . 这其中 常量配置  和 包含其他配置文件的配置  二 ...

  3. 一、Django的基本用法

    学习Django有一段时间了,整理一下,充当笔记. MVC 大部分开发语言中都有MVC框架 MVC框架的核心思想是:解耦 降低各功能模块之间的耦合性,方便变更,更容易重构代码,最大程度上实现代码的重用 ...

  4. $.each遍历json数组

    1.遍历单层json数组 我们把idx和obj都打印出来看看,到底是什么东西 var json1 =[{"id":"1","tagName" ...

  5. style scoped

    scoped: 只在父div和其内容内生效,

  6. System.Reflection名称空间下的程序集类Assembly应用.

    利用反射中的程序集类(Assembly--抽象类)动态加载类库(.dll)或者可执行程序(.exe). 优点:①.可以消除if条件的逻辑判断.②.减少内存资源.③.有利于程序扩展. 缺点... 使用静 ...

  7. javascript中数组的深拷贝的方法

    一.什么是浅拷贝 在js当中,我们常常遇到数组复制的的情况,许多人一般都会使用"="来直接把一个数组赋值给一个变量,如 var a=[1,2,3]; var b=a; consol ...

  8. restful架构风格设计准则(二)以资源为中心,一个url

    读书笔记,原文链接:http://www.cnblogs.com/loveis715/p/4669091.html,感谢作者! 1.REST是一种架构风格,其核心是面向资源,简化设计,降低开发的复杂性 ...

  9. VS2013 堆栈溢出调查(0xC00000FD: Stack overflow)

    在调试一个代码时,执行过程中会出现如下错误(0xC00000FD: Stack overflow). 很明显是堆栈溢出了. 网上很多方法,都是通过修改设置工程配置,把堆栈调大一些,如下图. 但是堆栈到 ...

  10. 记录安装centos6.5的几个要紧步骤

    1.安装新系统 因为是服务器,不是普通电脑,貌似对usb支持不好,所以用的光盘安装. centos 6.5 64位 2.跳过测试 3.服务器语言 选择english,键盘是english.US 4.选 ...