Description

长度为n的排列,且满足从中间任意位置划分为两个非空数列后,左边的最大值>右边的最小值。问这样的排列有多少个%998244353

题面

Solution

正难则反

\(f[n]=n!-\)不满足条件的排列

不满足条件的排列一定是这样的:

存在一个断点 \(L\),使得 \([1,L]\) 中的数的值域也为 \([1,L]\),\([L+1,n]\) 的值域为 \([L+1,n]\)

但是一个不合法的排列,可能存在很多个断点 \(L\) 满足上述条件,会算重很多次,所以我们要强制前半部分是合法的,方案数为 \(f[i]\)

\(f[n]=\sum_{i=1}^{n-1}f[i]*(n-i)!\)

这个式子用分治 \(*NTT\) 求解就好了

#include<bits/stdc++.h>
using namespace std;
const int N=400005,mod=998244353;
int T,q[N],Fac[N],f[N],n,m,L,R[N],inv;
inline int qm(int x,int k){
int sum=1;
while(k){
if(k&1)sum=1ll*sum*x%mod;
x=1ll*x*x%mod;k>>=1;
}return sum;
}
inline void NTT(int *A,int o){
for(int i=0;i<n;i++)if(i<R[i])swap(A[i],A[R[i]]);
for(int i=1;i<n;i<<=1){
int t0=qm(3,(mod-1)/(i<<1)),x,y;
for(int j=0;j<n;j+=i<<1){
int t=1;
for(int k=0;k<i;k++,t=1ll*t*t0%mod){
x=A[j+k];y=1ll*t*A[j+k+i]%mod;
A[j+k]=(x+y)%mod;A[j+k+i]=(x-y+mod)%mod;
}
}
}
if(o==-1)reverse(A+1,A+n);
}
inline void mul(int *A,int *B){
NTT(A,1);NTT(B,1);
for(int i=0;i<n;i++)A[i]=1ll*A[i]*B[i]%mod;
NTT(A,-1);
}
int A[N],B[N];
inline void solve(int l,int r){
if(l==r){f[l]=(Fac[l]-f[l]+mod)%mod;return ;}
int mid=(l+r)>>1;
solve(l,mid);
n=1;m=(r-l+1);
for(n=1,L=0;n<=m;n<<=1)L++;inv=qm(n,mod-2);
for(int i=0;i<n;i++)R[i]=(R[i>>1]>>1)|((i&1)<<(L-1)),A[i]=B[i]=0;
for(int i=l;i<=mid;i++)A[i-l]=f[i];
for(int i=1;i<m;i++)B[i]=Fac[i];
mul(A,B);
for(int i=mid+1;i<=r;i++)f[i]=(f[i]+1ll*A[i-l]*inv)%mod;
solve(mid+1,r);
}
int main(){
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
scanf("%d",&T);
int n=0;
for(int i=1;i<=T;i++)scanf("%d",&q[i]),n=max(n,q[i]);
Fac[0]=1;for(int i=1;i<=n;i++)Fac[i]=1ll*Fac[i-1]*i%mod;
solve(1,n);
for(int i=1;i<=T;i++)printf("%d\n",f[q[i]]);
return 0;
}

51nod 1514 美妙的序列的更多相关文章

  1. 51nod 1514 美妙的序列 分治NTT + 容斥

    Code: #include<bits/stdc++.h> #define ll long long #define mod 998244353 #define maxn 400000 # ...

  2. NTT【51nod】1514 美妙的序列

    题意:1~n 的全排列中,有多少个排列满足任意从中间切成两段后,左边段的最大值大于右边段的最小值? 例如:n为3时有3种 2 3 1 3 1 2 3 2 1 解释:比如 2 3 1 (2) (3 1) ...

  3. Solution -「51nod 1514」美妙的序列

    \(\mathcal{Description}\)   Link.   称排列 \(\{p_n\}\) 美妙,当且仅当 \((\forall i\in[1,n))(\max_{j\in[1,i]}\{ ...

  4. [51nod1514] 美妙的序列

    Description 如果对于一个 \(1\sim n\) 的排列满足: 在 \(1\sim n-1\) 这些位置之后将序列断开,使得总可以从右边找一个数,使得该数不会比左边所有数都大,则称该序列是 ...

  5. 【51nod 1514】 美妙的序列

    题目 我们发现我们得正难则反 还是设\(f_i\)表示长度为\(i\)的序列个数 考虑容斥 \[f_i=i!-\sum_{j=1}^{i-1}f_j(i-j)!\] \(i!\)显然是总方案数,我们减 ...

  6. 51nod 1510 最小化序列 | DP 贪心

    题目描述 现在有一个长度为n的数组A,另外还有一个整数k.数组下标从1开始. 现在你需要把数组的顺序重新排列一下使得下面这个的式子的值尽可能小. ∑|A[i]−A[i+k]| 特别的,你也可以不对数组 ...

  7. 【51nod】1251 Fox序列的数量

    题解 容斥题 我们枚举出现次数最多的数出现了K次 然后我们需要计算的序列是所有数字出现个数都不超过K - 1次 我们枚举不合法的数字的数目j,说明这个排列里除了我们固定出现K次的数至少有j个数是不合法 ...

  8. 【51nod 1251】 Fox序列的数量(以及带限制插板法讲解)

    为什么网上没有篇详细的题解[雾 可能各位聚聚觉得这道题太简单了吧 /kk 题意 首先题目是求满足条件的序列个数,条件为:出现次数最多的数仅有一个 分析 感谢 刚睡醒的 JZ姐姐在咱写题解忽然陷入自闭的 ...

  9. 【51NOD 1478】括号序列的最长合法子段

    很恶心啊,一道水题改了半天,主要是各种细节没有注意到,包括左括号剩余时有可能会出错的情况,需要从后往前扫 贡献一组测试数据: ((()))())(())(( 答案:8 1 #include<cs ...

随机推荐

  1. Beta 第二天

    今天遇到的困难: 组员对github极度的不适应 Android Studio版本不一致项目难以打开运行 移植云端的时候,愚蠢的把所有项目开发环境全部搬上去.本身云的内存小,性能差,我们花费了太多时间 ...

  2. C语言函数2

    一.PTA实验作业 6-3 使用函数判断完全平方数: 1. 本题PTA提交列表: 2. 设计思路: 3.本题调试过程碰到问题及PTA提交列表情况说明: 1.一开始考虑让输入值N去整除一个循环变量i,i ...

  3. C语言---字符数组

    一.PTA实验作业 题目1:7-2 统计一行文本的单词个数 1. 本题PTA提交列表 2. 设计思路 定义循环变量i,j定义不为空格的字符数count,定义单词数number,i,j,count,nu ...

  4. JFinal项目发送邮件——jfinal-mail-plugin

    JFianl框架: JFinal 是基于 Java 语言的极速 WEB + ORM 框架,其核心设计目标是开发迅速.代码量少.学习简单.功能强大.轻量级.易扩展.Restful.在拥有Java语言所有 ...

  5. Comet之SSE(Server - Sent - Envent,服务器发送事件)

    1.SSE API 先要创建一个新的EventSource对象,并传进一个入口点: var source = new EventSource("myenvent.php"); △: ...

  6. LeetCode & Q283-Move Zeroes-Easy

    Array Two Pointers Description: Given an array nums, write a function to move all 0's to the end of ...

  7. maven入门(1-3)maven的生命周期

      maven的生命周期 maven的生命周期是抽象的,其实际行为都由插件来完成,引入maven 的 生命周期就是为了对所有的构建过程进行抽象和统一. 这种方式类似于模板方法,模板方法模式在父类中定义 ...

  8. kafka---broker 保存消息

    1 .存储方式 物理上把 topic 分成一个或多个 patition(对应 server.properties 中的 num.partitions=3 配置),每个 patition 物理上对应一个 ...

  9. codeforces round 425 div2

    A. Sasha and Sticks 水题,判断一下次数的奇和偶就可以的. B. Petya and Exam 赛上的时候没有写出来,orz,记录一下吧. 题意:给出一个模式串,可能会有?和*两种符 ...

  10. 2018 6年iOS开发常用的三方库

    开发一般APP必备三方库,省力秘籍!!!本篇文章会经常更新最新常用的三方. 1.网络请求库 AFNetworking https://github.com/AFNetworking/AFNetwork ...