题链:

http://www.lydsy.com/JudgeOnline/problem.php?id=1096

题解:

斜率优化DP

$(d_i:i 位置到1位置的距离,p_i:i位置的成品数量,c_i:i位置建仓库的费用)$

先来定义dp数组:

令DP[i]表示在i位置建立仓库,且1~i位置都安排完毕的最小总花费。

转移:

$DP[i]=min(DP[j]+W(j+1{~}i位置的物品挪动到i位置的代价)+c_i)$

看看W如何计算:

$W=(d_i-d_{i})p_{i}+(d_i-d_{i-1})p_{i-1}+\cdots+(d_i-d_{j+1})p_{j+1}$

$\quad=d_i(p_i+p_{i-1}+\cdots+p_{j+1})-(d_{i}p_{i}+d_{i-1}p_{i-1}+\cdots+d_{j+1}p_{j+1})$

令$sump_i=p_i+p_{i-1}+\cdots+p_{1}$,$sumdp_i=d_ip_i+d_{i-1}p_{i-1}+\cdots+d_{1}p_{1}$

所以

$W=d_i(sump_i-sump_j)-(sumdp_i-sumdp_j)$

$\quad=d_isump_i-sumdp_i-d_isump_j+sumdp_j$

然后把W写进DP转移,(若j转移给i的话):

$DP[i]=(d_isump_i-sumdp_i+c_i)-(d_isump_j)+(sumdp_j+DP[j]))$

一个典型的可以用斜率优化的转移。


令 $Y_j=DP[j]+sumdp_j$

若对于当前计算的DP[i],存在两个转移来源点 k,j,k < j,且j优于k

则得到

$Y_j-d_isump_j-(Y_k-d_isump_k)<0$

化简:$\frac{Y_j-Y_k}{sump_j-sump_k}<d_i$

令Slope(j,k)=$\frac{Y_j-Y_k}{sump_j-sump_k}$,

则得到结论:$若k < j,且Slope(j,k)<d_i,则j优于k$。

那么如果存在 k<j<i,且Slope(i,j)<Slope(j,k),则j是无效点,舍去。

同时注意到$d_i$单增,所以可以用单调队列维护。

最终的复杂度 O(N)

代码:

#include<cstdio>
#include<cstring>
#include<iostream>
#define MAXN 1000050
#define ll long long
using namespace std;
ll d[MAXN],p[MAXN],c[MAXN];
ll DP[MAXN],sump[MAXN],sumdp[MAXN];
int N;
struct Moque{
int q[MAXN],l,r;
#define Y(j) (DP[j]+sumdp[j])
#define X(j) (sump[j])
#define Slope(j,k) (1.0*Y(j)-Y(k))/(1.0*X(j)-X(k))
void Reset(){l=r=1;q[1]=0;}
void Push(int i){
if(l<=r&&X(i)==X(q[r]))
{if(Y(i)<Y(q[r])) r--; else return;}
while(l+1<=r&&Slope(i,q[r])<Slope(q[r],q[r-1])) r--;
q[++r]=i;
}
int Query(int i){
while(l+1<=r&&Slope(q[l+1],q[l])<d[i]) l++;
return q[l];
}
}Q;
void read(ll &x){
static int sn; static char ch;
x=0; sn=1; ch=getchar();
while(ch<'0'||'9'<ch){if(ch=='-')sn=-1;ch=getchar();}
while('0'<=ch&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
x=x*sn;
}
int main(){
scanf("%d",&N);
for(int i=1;i<=N;i++){
read(d[i]); read(p[i]); read(c[i]);
sump[i]=p[i]+sump[i-1];
sumdp[i]=d[i]*p[i]+sumdp[i-1];
}
Q.Reset();
for(int i=1,j;i<=N;i++){
j=Q.Query(i);
DP[i]=d[i]*sump[i]-sumdp[i]+c[i]-d[i]*sump[j]+sumdp[j]+DP[j];
Q.Push(i);
}
printf("%lld",DP[N]);
return 0;
}

  

●BZOJ 1096 [ZJOI2007]仓库建设的更多相关文章

  1. BZOJ 1096: [ZJOI2007]仓库建设 [斜率优化DP]

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4201  Solved: 1851[Submit][Stat ...

  2. bzoj 1096: [ZJOI2007]仓库建设 斜率優化

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2242  Solved: 925[Submit][Statu ...

  3. bzoj 1096 [ZJOI2007]仓库建设(关于斜率优化问题的总结)

    1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3234  Solved: 1388[Submit][Stat ...

  4. BZOJ 1096: [ZJOI2007]仓库建设( dp + 斜率优化 )

    dp(v) = min(dp(p)+cost(p,v))+C(v) 设sum(v) = ∑pi(1≤i≤v), cnt(v) = ∑pi*xi(1≤i≤v), 则cost(p,v) = x(v)*(s ...

  5. 边坡优化主题5——bzoj 1096 [ZJOI2007]仓库建设 解决问题的方法

    [原标题] 1096: [ZJOI2007]仓库建设 Time Limit: 10 Sec  Memory Limit: 162 MB Submit: 1998  Solved: 816 [id=10 ...

  6. BZOJ 1096 [ZJOI2007]仓库建设(斜率优化DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1096 [题目大意] 有个斜坡,有n个仓库,每个仓库里面都有一些物品,物品数目为p,仓库 ...

  7. BZOJ 1096 ZJOI2007 仓库建设 边坡优化

    标题效果:特定n植物,其中一些建筑仓库,有一点使,假设没有仓库仓库向右仓库.最低消费要求 非常easy边坡优化--在此之前刷坡优化的情况下,即使这道题怎么错过 订购f[i]作为i点建设化妆i花费所有安 ...

  8. BZOJ 1096 [ZJOI2007]仓库建设:斜率优化dp

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1096 题意: 有n个工厂,从左往右排成一排,分别编号1到n. 每个工厂里有p[i]件产品, ...

  9. bzoj 1096: [ZJOI2007]仓库建设【斜率优化】

    好眼熟啊 直接dp显然很难算,所以设val为只在n点建一个仓库的费用,然后设f[i]为在i~n点建若干仓库并且i点一定建一个仓库的最大省钱数 转移很显然,设s为p的前缀和,f[i]=max{f[j]+ ...

随机推荐

  1. JAVAGUI设计步骤

    ①创建容器 首先要创建一个GUI应用程序,需要创建一个用于容纳所有其它GUI组件元素的载体,Java中称为容器.典型的包括窗口(Window).框架(Frame/JFrame).对话框(Dialog/ ...

  2. Spring事务注意点

    service中未带事务的方法调用了自身带事务的方法时,按下面写法数据是提交不了的. public String getMaxSystemVersionNo() { SystemVersion ver ...

  3. Java中三种比较常见的数组排序

    我们学习数组比较常用的数组排序算法不是为了在工作中使用(这三个算法性能不高),而是为了练习for循环和数组.因为在工作中Java API提供了现成的优化的排序方法,效率很高,以后工作中直接使用即可 . ...

  4. RxSwift:ReactiveX for Swift 翻译

    RxSwift:ReactiveX for Swift 翻译 字数1787 阅读269 评论3 喜欢3 图片发自简书App RxSwift | |-LICENSE.md |-README.md |-R ...

  5. 关于GPUImage的导入

    对于GPUImage的使用方面,GitHub上已经非常详细了,就不一一赘述了,但是对于项目的导入来说,最好的方式是 1.下载GPUImage并解压 2.打开压缩包后如图 3.打开终端,cd到此目录 4 ...

  6. System V IPC 之信号量

    本文继<System V IPC 之共享内存>之后接着介绍 System V IPC 的信号量编程.在开始正式的内容前让我们先概要的了解一下 Linux 中信号量的分类. 信号量的分类 在 ...

  7. python使用tesseract-ocr完成验证码识别(模型训练和使用部分)

    一.Tesseract训练 大体流程为:安装jTessBoxEditor -> 获取样本文件 -> Merge样本文件 –> 生成BOX文件 -> 定义字符配置文件 -> ...

  8. 构建自己的 PHP 框架

    这是一个系列的文章,项目地址在这里,欢迎大家star. 这个框架前一部分比较像Yii,后一部分比较像Laravel,因为当时正在看相应框架的源码,所以会有不少借鉴参考.捂脸- 这个框架千万不要直接应用 ...

  9. 解决IE下a标签点击有虚线边框的问题

    解决IE下a标签点击有虚线边框的问题 关键词:IE去除虚线边框.IE解决a标签虚线问题 先看看IE下,a标签出现的虚线边框问题: (上面中,红线包裹的就是一个翻页的按钮,按钮实际是hml的a标签做的, ...

  10. 查找git ignore的追踪

    前言 版本控制说简单也简单,说复杂也困难的多.作为开发者,最基础的版本管理和团队协作的功能必须掌握.而其他一些相关的信息也可以了解下.比如,这次就有同事遇到了问题. 遇到的问题 在windows下,往 ...