Description

有一棵点数为N的树,树边有边权。给你一个在0~N之内的正整数K,你要在这棵树中选择K个点,将其染成黑色,并
将其他的N-K个点染成白色。将所有点染色后,你会获得黑点两两之间的距离加上白点两两之间距离的和的收益。
问收益最大值是多少。
 

Input

第一行两个整数N,K。
接下来N-1行每行三个正整数fr,to,dis,表示该树中存在一条长度为dis的边(fr,to)。
输入保证所有点之间是联通的。
N<=2000,0<=K<=N
 

Output

输出一个正整数,表示收益的最大值。
 

Sample Input

5 2
1 2 3
1 5 1
2 3 1
2 4 2

Sample Output

17
【样例解释】
将点1,2染黑就能获得最大收益。

题解:

小小套路题,我们要想办法简化状态,我们如果简单dp,需要知道选的白点和黑点分别是什么.

但是我们可以改变成求每一条边对答案贡献多少

同样地,f[i][j]表示i的子树中,选了j个黑点,对答案的最大贡献,这样就没了后效性.

已知i子树中选了j个黑点,那么其他的黑点必然在i的上方,且必然经过i到fa[i]上边,所以这条边贡献直接乘以j*(m-j)即可,白点同理

  1. #include <algorithm>
  2. #include <iostream>
  3. #include <cstdlib>
  4. #include <cstring>
  5. #include <cstdio>
  6. #include <cmath>
  7. #define RG register
  8. #define il inline
  9. using namespace std;
  10. typedef long long ll;
  11. const int N=;
  12. int n,m,num=,nxt[N<<],to[N<<],dis[N<<],head[N];ll f[N][N];
  13. void addedge(int x,int y,int z){
  14. nxt[++num]=head[x];to[num]=y;
  15. dis[num]=z;head[x]=num;
  16. }
  17. int sz[N];
  18. void dfs(int x,int last){
  19. RG int u;ll val,tmp;
  20. sz[x]=;
  21. for(RG int i=head[x];i;i=nxt[i]){
  22. u=to[i];
  23. if(u==last)continue;
  24. dfs(u,x);
  25. for(int j=min(sz[x],m);j>=;j--){
  26. for(int k=min(m-j,sz[u]);k>=;k--){
  27. val=(ll)k*(m-k)*dis[i]+(ll)(sz[u]-k)*(n-m-(sz[u]-k))*dis[i];
  28. tmp=f[x][j]+f[u][k]+val;
  29. if(tmp>f[x][k+j])f[x][j+k]=tmp;
  30. }
  31. }
  32. sz[x]+=sz[u];
  33. }
  34. }
  35. void work()
  36. {
  37. int x,y,z;
  38. scanf("%d%d",&n,&m);
  39. for(int i=;i<n;i++){
  40. scanf("%d%d%d",&x,&y,&z);
  41. addedge(x,y,z);addedge(y,x,z);
  42. }
  43. dfs(,);
  44. printf("%lld\n",f[][m]);
  45. }
  46. int main()
  47. {
  48. work();
  49. return ;
  50. }

bzoj 4033: [HAOI2015]树上染色的更多相关文章

  1. BZOJ 4033: [HAOI2015]树上染色题解

    BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...

  2. bzoj 4033: [HAOI2015]树上染色 [树形DP]

    4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...

  3. BZOJ 4033[HAOI2015] 树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3188  Solved: 1366[Submit][Stat ...

  4. bzoj 4033: [HAOI2015]树上染色【树形dp】

    准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...

  5. BZOJ 4033 [HAOI2015]树上染色 ——树形DP

    可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...

  6. 【BZOJ】4033: [HAOI2015]树上染色 树上背包

    [题目]#2124. 「HAOI2015」树上染色 [题意]给定n个点的带边权树,要求将k个点染成黑色,使得 [ 黑点的两两距离和+白点的两两距离和 ] 最大.n<=2000. [算法]树上背包 ...

  7. BZOJ 4033: [HAOI2015]树上染色

    题解: 树形DP 思路,考虑每条边的贡献,即这条边两边的黑点数量相乘+白点数量相乘再成边长 #include<iostream> #include<cstdio> #inclu ...

  8. BZOJ4033: [HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 3461  Solved: 1473[Submit][Stat ...

  9. [BZOJ4033][HAOI2015]树上染色(树形DP)

    4033: [HAOI2015]树上染色 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 2437  Solved: 1034[Submit][Stat ...

随机推荐

  1. bzoj千题计划113:bzoj1023: [SHOI2008]cactus仙人掌图

    http://www.lydsy.com/JudgeOnline/problem.php?id=1023 dp[x] 表示以x为端点的最长链 子节点与x不在同一个环上,那就是两条最长半链长度 子节点与 ...

  2. System V IPC 之消息队列

    消息队列和共享内存.信号量一样,同属 System V IPC 通信机制.消息队列是一系列连续排列的消息,保存在内核中,通过消息队列的引用标识符来访问.使用消息队列的好处是对每个消息指定了特定消息类型 ...

  3. @SpringBootApplication 组合注解包含哪些注解及作用

    序:在学习springboot,教程一般对一些注解语焉不详,发现@SpringBootApplication 这个注解包含了很多注解,也就是说使用这个注解可以少写几个注解,这里看源码粘出来一些,仅用于 ...

  4. 快速搭建ssm框架

    快速搭建SSM框架 因为最近有很多朋友问我自己的项目搭建的不够完善,并且经常出现一些小问题,那么今天我又整理了一下文档教大家如何快速搭建SSM框架我是用 eclipse搭建的,如果想用idear的话我 ...

  5. 【原创】公司各个阶段 CTO 需要做什么?(上篇)

    CTO 是企业内技术最高负责人,对企业的发展起到至关重要的作用.但随着公司的不断发展,CTO 的工作重心也会不断变化.只有在正确的阶段做正确的事,才能更好地为公司做出贡献.我是空中金融 CTO ,TG ...

  6. 新概念英语(1-35)Our village

    新概念英语(1-35)Our village Are the children coming out of the park or going into it ? This is a photogra ...

  7. python基础——继承与派生、组合

    python基础--继承与派生 1 什么是继承: 继承是一种创建新的类的方式,在python中,新建的类可以继承自一个或者多个父类,原始类成为基类或超累,新建的类成为派生类或子类 1.1 继承分为:单 ...

  8. CMDB开发

    浅谈ITIL TIL即IT基础架构库(Information Technology Infrastructure Library, ITIL,信息技术基础架构库)由英国政府部门CCTA(Central ...

  9. windows10无法启动承载网络

    每个都试一下

  10. 深度学习中Xavier初始化

    "Xavier"初始化方法是一种很有效的神经网络初始化方法,方法来源于2010年的一篇论文<Understanding the difficulty of training ...