bzoj 4033: [HAOI2015]树上染色
Description
Input
Output
Sample Input
1 2 3
1 5 1
2 3 1
2 4 2
Sample Output
【样例解释】
将点1,2染黑就能获得最大收益。
题解:
小小套路题,我们要想办法简化状态,我们如果简单dp,需要知道选的白点和黑点分别是什么.
但是我们可以改变成求每一条边对答案贡献多少
同样地,f[i][j]表示i的子树中,选了j个黑点,对答案的最大贡献,这样就没了后效性.
已知i子树中选了j个黑点,那么其他的黑点必然在i的上方,且必然经过i到fa[i]上边,所以这条边贡献直接乘以j*(m-j)即可,白点同理
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
using namespace std;
typedef long long ll;
const int N=;
int n,m,num=,nxt[N<<],to[N<<],dis[N<<],head[N];ll f[N][N];
void addedge(int x,int y,int z){
nxt[++num]=head[x];to[num]=y;
dis[num]=z;head[x]=num;
}
int sz[N];
void dfs(int x,int last){
RG int u;ll val,tmp;
sz[x]=;
for(RG int i=head[x];i;i=nxt[i]){
u=to[i];
if(u==last)continue;
dfs(u,x);
for(int j=min(sz[x],m);j>=;j--){
for(int k=min(m-j,sz[u]);k>=;k--){
val=(ll)k*(m-k)*dis[i]+(ll)(sz[u]-k)*(n-m-(sz[u]-k))*dis[i];
tmp=f[x][j]+f[u][k]+val;
if(tmp>f[x][k+j])f[x][j+k]=tmp;
}
}
sz[x]+=sz[u];
}
}
void work()
{
int x,y,z;
scanf("%d%d",&n,&m);
for(int i=;i<n;i++){
scanf("%d%d%d",&x,&y,&z);
addedge(x,y,z);addedge(y,x,z);
}
dfs(,);
printf("%lld\n",f[][m]);
}
int main()
{
work();
return ;
}
bzoj 4033: [HAOI2015]树上染色的更多相关文章
- BZOJ 4033: [HAOI2015]树上染色题解
BZOJ 4033: [HAOI2015]树上染色题解(树形dp) 标签:题解 阅读体验:https://zybuluo.com/Junlier/note/1327400 原题地址: BZOJ 403 ...
- bzoj 4033: [HAOI2015]树上染色 [树形DP]
4033: [HAOI2015]树上染色 我写的可是\(O(n^2)\)的树形背包! 注意j倒着枚举,而k要正着枚举,因为k可能从0开始,会使用自己更新一次 #include <iostream ...
- BZOJ 4033[HAOI2015] 树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3188 Solved: 1366[Submit][Stat ...
- bzoj 4033: [HAOI2015]树上染色【树形dp】
准确的说应该叫树上分组背包?并不知道我写的这个叫啥 设计状态f[u][j]为在以点u为根的子树中有j个黑点,转移的时候另开一个数组,不能在原数组更新(因为会用到没更新时候的状态),方程式为g[j+k] ...
- BZOJ 4033 [HAOI2015]树上染色 ——树形DP
可以去UOJ看出题人的题解. 这样的合并,每一个点对只在lca处被考虑到,复杂度$O(n^2)$ #include <map> #include <ctime> #includ ...
- 【BZOJ】4033: [HAOI2015]树上染色 树上背包
[题目]#2124. 「HAOI2015」树上染色 [题意]给定n个点的带边权树,要求将k个点染成黑色,使得 [ 黑点的两两距离和+白点的两两距离和 ] 最大.n<=2000. [算法]树上背包 ...
- BZOJ 4033: [HAOI2015]树上染色
题解: 树形DP 思路,考虑每条边的贡献,即这条边两边的黑点数量相乘+白点数量相乘再成边长 #include<iostream> #include<cstdio> #inclu ...
- BZOJ4033: [HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 3461 Solved: 1473[Submit][Stat ...
- [BZOJ4033][HAOI2015]树上染色(树形DP)
4033: [HAOI2015]树上染色 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 2437 Solved: 1034[Submit][Stat ...
随机推荐
- const volatile同时限定一个类型int a = 10
const和volatile放在一起的意义在于: (1)本程序段中不能对a作修改,任何修改都是非法的,或者至少是粗心,编译器应该报错,防止这种粗心: (2)另一个程序段则完全有可能修改,因此编译器最好 ...
- Flask 学习 四 数据库
class Role(db.Model): __tablename__='roles' id = db.Column(db.Integer,primary_key=True) name = db.Co ...
- DML数据操作语言之查询(二)
当我们查询出了N条记录之后 ,我们知道一共是几条记录,或者这些记录某一字段(列值)的最大值,最小值,平均值等,就可以使用聚合函数. 1.聚合函数 聚合函数会将null 排除在外.但是count(*)例 ...
- bzoj千题计划244:bzoj3730: 震波
http://www.lydsy.com/JudgeOnline/problem.php?id=3730 点分树内对每个节点动态维护2颗线段树 线段树以距离为下标,城市的价值为权值 对于节点x的两棵线 ...
- 微信支付get_brand_wcpay_request:fail
最近做了微信支付功能,和后端一起踩坑中,微信一直报错:get_brand_wcpay_request:fail 出现该问题的原因: 1.生成的sign签名有问题 2.支付授权目录配置有问题 在经过仔细 ...
- SQLite 带你入门
SQLite数据库相较于我们常用的Mysql,Oracle而言,实在是轻量得不行(最低只占几百K的内存).平时开发或生产环境中使用各种类型的数据库,可能都需要先安装数据库服务(server),然后才能 ...
- Pandas速查手册中文版
本文翻译自文章: Pandas Cheat Sheet - Python for Data Science ,同时添加了部分注解. 对于数据科学家,无论是数据分析还是数据挖掘来说,Pandas是一个非 ...
- Mego(1) - NET中主流ORM框架性能对比
从刚刚开始接触ORM到现在已有超过八年时间,用过了不少ORM框架也了解了不少ORM框架,看过N种关于ORM框架的相关资料与评论,各种言论让人很难选择.在ORM的众多问题中最突出的问题是关于性能方面的问 ...
- Java NIO之选择器
1.简介 前面的文章说了缓冲区,说了通道,本文就来说说 NIO 中另一个重要的实现,即选择器 Selector.在更早的文章中,我简述了几种 IO 模型.如果大家看过之前的文章,并动手写过代码的话.再 ...
- zTree根据json选中节点,并且设置其他节点不可选
首先,在适配目录树时,使用checkbox形式,配置代码如下: var settingCatalog = { check:{ enable: true }, data:{ simpleData:{ e ...