十几年前的题啊……果然还处于高精度遍地走的年代。不过通过这道题,小C想mark一下n叉树计数的做法。

Description

  如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树。如果该树中最底层的节点深度为d(根的深度为0),那么我们称它为一棵深度为d的严格n元树。例如,深度为2的严格2元树有三个,如下图:

  

  给出n,d,编程数出深度为d的n元树数目。

Input

  仅包含两个整数n,d。

Output

  仅包含一个数,即深度为d的n元树的数目。

Sample Input

  3 5

Sample Output

  58871587162270592645034001

HINT

  0 < n <= 32,0 <= d <=16,保证答案的十进制位数不超过200位。

Solution

  把题目中树的边看成点,点看成边,题目就转化为求深度为d的n叉树的个数(根节点深度为1)。

  直觉告诉我们,深度在d以内的树的个数 比 深度为d的树的个数 好求,所以,设f[d]=深度在d以内的树的个数。

  然后 深度为d的树的个数 = 深度在d以内的树的个数 - 深度在d-1以内的树的个数 = f[d] - f[d-1]。

  然而小C一开始还是没有头绪,开始DP打表观察规律。

  然后就观察出了递推式:f[x] = f[x-1]^n+1 (1<=x<=d , f[0] = 1)。

  仔细想想为什么呢?我们用n棵深度在x-1以内的树作为儿子,再加上根节点就变成深度在x以内的树啦!

  最后+1是因为还要加上深度为0的空树。

#include <cstdio>
#include <algorithm>
#include <cstring>
#define MOD 10000
#define MS 400
#define MN 20
using namespace std;
struct hp
{
int len,a[MS];
void add() {++a[];}
friend hp operator-(const hp& A,const hp& B)
{
hp C=A;
register int i;
for (i=;i<=B.len;++i)
{
C.a[i]-=B.a[i];
if (C.a[i]<) --C.a[i+],C.a[i]+=MOD;
}
while (!C.a[C.len]) --C.len;
return C;
}
friend hp operator*(const hp& A,const hp& B)
{
hp C; C.len=A.len+B.len+;
register int i,j;
memset(C.a,,sizeof(C.a));
for (i=;i<=A.len;++i)
for (j=;j<=B.len;++j)
C.a[i+j-]+=A.a[i]*B.a[j];
for (i=;i<C.len;++i)
C.a[i+]+=C.a[i]/MOD,C.a[i]%=MOD;
while (!C.a[C.len]) --C.len;
return C;
}
}f[MN],ans;
int m,n; inline int read()
{
int n=,f=; char c=getchar();
while (c<'' || c>'') {if(c=='-')f=-; c=getchar();}
while (c>='' && c<='') {n=n*+c-''; c=getchar();}
return n*f;
} hp mi(hp x,int y)
{
hp z;
memset(z.a,,sizeof(z.a)); z.len=z.a[]=;
for (;y;y>>=,x=x*x) if (y&) z=z*x;
return z;
} int main()
{
register int i;
m=read(); n=read();
if (n<=) return *printf("");
f[].len=; f[].a[]=;
for (i=;i<=n;++i) f[i]=mi(f[i-],m),f[i].add();
ans=f[n]-f[n-];
printf("%d",ans.a[ans.len]);
for (i=ans.len-;i;--i) printf("%04d",ans.a[i]);
}

Last Word

  果然还是观察规律好用。

  一道还算不错的题因为掺了高精度而风评被害。

[BZOJ]1089 严格n元树(SCOI2003)的更多相关文章

  1. BZOJ 1089 严格n元树 (递推+高精度)

    题解:用a[i]表<=i时有几种树满足度数要求,那么这样就可以递归了,a[i]=a[i-1]^n+1.n个节点每个有a[i-1]种情况,那么将其相乘,最后加上1,因为深度为0也算一种.那么答案就 ...

  2. 【BZOJ】【1089】【SCOI2003】严格n元树

    高精度/递推 Orz Hzwer…… 然而我想多了…… 理解以后感觉黄学长的递推好精妙啊 顺便学到了一份高精度的板子= =233 引用下题解: f[i]=f[i-1]^n+1 ans=f[d]-f[d ...

  3. BZOJ 1089: [SCOI2003]严格n元树

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1591  Solved: 795[Submit][Statu ...

  4. bzoj 1089 [SCOI2003]严格n元树(DP+高精度)

    1089: [SCOI2003]严格n元树 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 1250  Solved: 621[Submit][Statu ...

  5. 【BZOJ】1089: [SCOI2003]严格n元树(递推+高精度/fft)

    http://www.lydsy.com/JudgeOnline/problem.php?id=1089 题意:求深度为d的n元树数目.(0<n<=32, 0<=d<=16) ...

  6. BZOJ 1089 SCOI2003 严格n元树 动态规划+高精度

    题目大意:定义一棵深度为d的严格n元树为根的深度为0,最深的节点深度为d,且每一个非叶节点都有恰好n个子节点的树 给定n和d,求深度为d的严格n元树一共同拥有多少种 此题的递推部分并不难 首先我们设深 ...

  7. bzoj 1089 SCOI2003严格n元树 递推

    挺好想的,就是一直没调过,我也不知道哪儿的错,对拍也拍了,因为数据范围小,都快手动对拍了也不知道 哪儿错了.... 我们定义w[i]代表深度<=i的严格n元树的个数 那么最后w[d]-w[d-1 ...

  8. bzoj 1089: [SCOI2003]严格n元树【dp+高精】

    设f[i]为深度为i的n元树数目,s为f的前缀和 s[i]=s[i-1]^n+1,就是增加一个根,然后在下面挂n个子树,每个子树都有s[i-1]种 写个高精就行了,好久没写WA了好几次-- #incl ...

  9. BZOJ 1089 (SCOI 2003) 严格n元树

    Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的严格n元树.例如,深度为2的严 ...

随机推荐

  1. 在ArcGIS中导出现有mxd的style文件

     做好的地图包含许多地图符号,这是之前花了很多功夫做的,怎么把它导出来再用呢?     在ArcGIS中右键工具栏,customize,选择command选项卡,在搜索框中输入style ,选择too ...

  2. OO第一次总结

    第一次作业: 第一次作业的指导书发下来之后我按着上面的步骤一步一步的做了之后发现项目拉下来了,怎么开始码代码呢...然后在舍友的帮助下才知道怎么建包建类,然后对Java的语法又不是很了解,于是就先把C ...

  3. Microsoft dynamic 批量更新

    //批量处理 ExecuteMultipleRequest multipleRequest = new ExecuteMultipleRequest() { Settings = new Execut ...

  4. centos7 安装docker

    1.首先cent7 基本是在vm上完全安装'. 2.参考官方网站安装 1.https://wiki.centos.org/AdditionalResources/Repositories OS req ...

  5. spring MVC框架入门(外加SSM整合)

    spring MVC框架 一.什么是sping MVC Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面.Spring 框架提供了构建 W ...

  6. 新概念英语(1-59)Is that all

    Does the lady buy any chalk? A:I want some envelopes, please. B:Do you want the large size or the sm ...

  7. Swing使用JavaFXweb组件

    概述 swing中内嵌入web组件的 需要使用一些其他的jar包 ,但是如果使用javafx的组件,那么也比较的方便,性能也比较高. 代码 webview 在javafx 中是作为 scene出现的所 ...

  8. DMO节点内部插入的常用方法与区别

    1.DOM内部插入append()与appendTo() 动态创建的元素是不够的,它只是临时存放在内存中,最终我们需要放到页面文档并呈现出来.那么问题来了,怎么放到文档上? 这里就涉及到一个位置关系, ...

  9. qt中文乱码

    刚开始学习qt,经常会遇到中文输出乱码,在网上找了解决办法有下面这个两个办法QTextCodec::setCodecForCStrings(QTextCodec::codecForName(" ...

  10. html标记语言 --超链接

    html标记语言 --超链接 四.超链接 1. 基本语法 <a href="" target="打开方式" name="页面锚点名称" ...