Description

现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形:

左上角点为(1,1),右下角点为(N,M)(上图中N=4,M=5).有以下三种类型的道路 1:(x,y)<==>(x+1,y) 2:(x,y)<==>(x,y+1) 3:(x,y)<==>(x+1,y+1) 道路上的权值表示这条路上最多能够通过的兔子数,道路是无向的. 左上角和右下角为兔子的两个窝,开始时所有的兔子都聚集在左上角(1,1)的窝里,现在它们要跑到右下解(N,M)的窝中去,狼王开始伏击这些兔子.当然为了保险起见,如果一条道路上最多通过的兔子数为K,狼王需要安排同样数量的K只狼,才能完全封锁这条道路,你需要帮助狼王安排一个伏击方案,使得在将兔子一网打尽的前提下,参与的狼的数量要最小。因为狼还要去找喜羊羊麻烦。

Input

第一行为N,M.表示网格的大小,N,M均小于等于1000.接下来分三部分第一部分共N行,每行M-1个数,表示横向道路的权值. 第二部分共N-1行,每行M个数,表示纵向道路的权值. 第三部分共N-1行,每行M-1个数,表示斜向道路的权值. 输入文件保证不超过10M

Output

输出一个整数,表示参与伏击的狼的最小数量.

Sample Input

3 4
5 6 4
4 3 1
7 5 3
5 6 7 8
8 7 6 5
5 5 5
6 6 6

Sample Output

14
 

题解

因为我这个煞笔还不会网络流>.<

这道题让左上到不了右下,就是要找一条左下到右上的路切断,当然这条路是最短的

于是建一个新图,把边视为点,同一个三角形的两条边两两连接,在新图上求最短路

那么这是一个稀疏图,于是用spfa解决

其实不用建图,spfa扩展时处理即可,另外这是一个点权图,但其实也是一样的

很多最短路题都不是裸的

有的需要对一个看似抽象的事建图

有的需要把一个图转成另一个图

一般怎么转呢

取反/边变成点/点变成边/...当然也有更活的

感觉还是很考察建模能力的

也是很有意思的

代码

填了多年的坑,爽哉。

用数组模拟队列就RE了,还是要用STL。

再次repeat一下spfa,小于就更新,不在就入队。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
using namespace std;
const int maxn=1e3+; int n,m,e[][maxn][maxn];
int inque[][maxn][maxn],dist[][maxn][maxn];
int d[][][]={{{,-,},{,,},{,-,},{,,}},
{{-,,-},{-,,},{,,-},{,,}},
{{-,,},{-,,},{-,,},{-,,}}};
queue<int>q[];
int ans; int cango(int w,int x,int y){
if(x<||x>n||y<||y>m) return ;
if(w==&&y==m) return ;
if(w==&&x==n) return ;
if(w==&&(x==n||y==m)) return ;
return ;
} void init(int w,int x,int y,int dd){
if(dd+e[w][x][y]>=dist[w][x][y]) return;
else dist[w][x][y]=dd+e[w][x][y];
if(inque[w][x][y]) return;
q[].push(w);q[].push(x);q[].push(y);
inque[w][x][y]=;
} int spfa(){
for(int i=;i<n;i++) init(,i,,);
for(int i=;i<m;i++) init(,n,i,); while(!q[].empty()){
int w=q[].front(),x=q[].front(),y=q[].front(),dd=dist[w][x][y];
q[].pop();q[].pop();q[].pop();
inque[w][x][y]=;
if(w==&&x==) ans=min(ans,dd);
if(w==&&y==m) ans=min(ans,dd);
for(int i=;i<;i++){
int wn=w+d[w][i][],xn=x+d[w][i][],yn=y+d[w][i][];
if(cango(wn,xn,yn))
init(wn,xn,yn,dd);
}
};
} int main(){
scanf("%d%d",&n,&m);
for(int i=;i<=n;i++)
for(int j=;j<m;j++) scanf("%d",&e[][i][j]);
for(int i=;i<n;i++)
for(int j=;j<=m;j++) scanf("%d",&e[][i][j]);
for(int i=;i<n;i++)
for(int j=;j<m;j++) scanf("%d",&e[][i][j]); memset(dist,,sizeof(dist));
ans=dist[][][]; spfa();
printf("%d\n",ans);
return ;
}

【建图+最短路】Bzoj1001 狼抓兔子的更多相关文章

  1. bzoj1001狼抓兔子 对偶图优化

    bzoj1001狼抓兔子 对偶图优化 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=1001 思路 菜鸡总是要填坑的! 很明显让你求网格图的最 ...

  2. BZOJ-1001 狼抓兔子 (最小割-最大流)平面图转对偶图+SPFA

    1001: [BeiJing2006]狼抓兔子 Time Limit: 15 Sec Memory Limit: 162 MB Submit: 14686 Solved: 3513 [Submit][ ...

  3. bzoj1001狼抓兔子

    1001: [BeiJing2006]狼抓兔子 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你 ...

  4. BZOJ1001:狼抓兔子(最小割最大流+vector模板)

    1001: [BeiJing2006]狼抓兔子 Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨, ...

  5. BZOJ1001 狼抓兔子(裸网络流)

    Description 现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的, 而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一 ...

  6. 最大流最小割——bzoj1001狼抓兔子,洛谷P2598

    前置知识 平面图 平面图就是平面上任意边都不相交的图.(自己瞎画的不算XD) 对偶图 比如说这个图,我们发现平面图肯定会把平面分成不同的区域(感觉像拓扑图),并把这些区域当做每个点(不被包围的区域独自 ...

  7. BZOJ1001 狼抓兔子 平面图转对偶图 最小割

    现在小朋友们最喜欢的"喜羊羊与灰太狼",话说灰太狼抓羊不到,但抓兔子还是比较在行的,而且现在的兔子还比较笨,它们只有两个窝,现在你做为狼王,面对下面这样一个网格的地形: 左上角点为 ...

  8. [bzoj1001]狼抓兔子 最小割

    题意概述:给出一张无向图,每条边有一个权值,割掉这条边代价为它的权值,求使起点不能到达终点的最小代价. 显然能看出这是个最小割嘛,然后最小割=最大流,建图的时候特殊处理一下再跑个最大流就好了. #in ...

  9. BZOJ1001 狼抓兔子(网络流转最短路:对偶图)

    题意: 给一个如图形式的\(n*m\)的方格,从左上走到右下,给出边权,问分成两块所需的最小代价.\(n,m\leq1000\). 思路: 显然是个最小割,但是\(O(n^2m)\)的复杂度很高,虽然 ...

随机推荐

  1. G1 GC技术解析

    介绍 G1 GC,全称Garbage-First Garbage Collector,通过-XX:+UseG1GC参数来启用.G1收集器是工作在堆内不同分区上的收集器,分区既可以是年轻代也可以是老年代 ...

  2. 如何安装Pycharm官方统计代码行插件

    最近一直想统计Pycharm的总计代码行数,找到了官方的统计行数插件,发现效果还不错. 官方代码统计插件指导: https://plugins.jetbrains.com/plugin/4509-st ...

  3. DB2许可证文件

    与 DB2® 数据库产品相关联的许可证文件有两种类型: 基本许可证密钥和 完整许可证密钥.这些许可证密钥以纯文本格式存储,通常称为 许可证文件或 许可证权利证书. "基本"许可证未 ...

  4. 到底创建了几个String对象?

    到底创建了几个String对象? 标签: 堆栈使用 对象创建 分类: 开发技术 关键字: java 面试题 string 创建几个对象 作者:臧圩人(zangweiren) 网址:http://zan ...

  5. dll附加依赖项查看——dumpbin 命令

    VS自带工具   查看程序或动态链接库需要的动态链接库 dumpbin /dependents d:\test.exe 查看动态链接库的输出函数 dumpbin /exports d:\libmysq ...

  6. 线上Django项目python2到3升级日记

    这两天干了一个几斤疯狂的事情,花不到一个工作日的时间把一个线上Django项目语言版本从python2升级到Python31.字典的一个语法变化 Python2.7: if dict1.haskey( ...

  7. golang使用通道模仿实现valatile语义

        golang团队在sync中提供了很多的原子操作函数,将原子操作转向由单独一个包提供,而不是像Java那样提供各种累,确实上手得更加简单.但是golang原生提供的并发操作没有Java来得丰富 ...

  8. 一天搞懂深度学习-训练深度神经网络(DNN)的要点

    前言 这是<一天搞懂深度学习>的第二部分 一.选择合适的损失函数 典型的损失函数有平方误差损失函数和交叉熵损失函数. 交叉熵损失函数: 选择不同的损失函数会有不同的训练效果 二.mini- ...

  9. 架构之CDN缓存

    CDN缓存 CDN主要解决将数据缓存到离用户最近的位置,一般缓存静态资源文件(页面,脚本,图片,视频,文件等).国内网络异常复杂,跨运营商的网络访问会很慢.为了解决跨运营商或各地用户访问问题,可以在重 ...

  10. Eeffective C++ 读书笔记( 32-38)

    条款三十二:确定你的public继承塑模出is-a关系 1.所谓最佳设计,取决于系统希望做什么事,包括现在和未来. 2.好的接口可以防止无效的代码通过编译,因此你应该宁可采取“在编译期拒绝企鹅飞行”的 ...