BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法

Description

Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数。Alice还希望
,这n个数中,至少有一个数是质数。Alice想知道,有多少个序列满足她的要求。

Input

一行三个数,n,m,p。
1<=n<=10^9,1<=m<=2×10^7,1<=p<=100

Output

一行一个数,满足Alice的要求的序列数量,答案对20170408取模。

Sample Input

3 5 3

Sample Output

33
 

求至少有一个质数的方案可以用总方案减去不含质数的方案。
先把1~m的质数筛出来,观察p特别小,考虑每个数%p的值对答案的贡献。
设F[i][j]表示从%p=i到%p=j的方案数,这个矩阵乘1次相当于向序列里多塞了个数,于是这道题变成了矩阵乘法。
然后发现f[i][j]=f[i+1][j+1],因此只需要对每个1~m中的i,f[0][i%p]++即可,剩下的可以通过平移得到。
 
代码:
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef long long ll;
ll mod=20170408;
int n,m,p,prime[7000050],cnt;
bool vis[20000050];
struct Mat {
ll v[105][105];
Mat() {memset(v,0,sizeof(v));}
Mat operator*(const Mat a) const {
Mat ans;
int i,j,k;
for(i=1;i<=p;i++)
for(j=1;j<=p;j++)
for(k=1;k<=p;k++)
(ans.v[i][j]+=v[i][k]*a.v[k][j])%=mod;
return ans;
}
}A,B;
Mat pow(Mat x,int y) {
Mat I;
int i;
for(i=1;i<=p;i++) I.v[i][i]=1;
while(y) {
if(y&1) I=I*x;
x=x*x;
y>>=1;
}
return I;
}
void init() {
register int i,j;
vis[1]=1;
for(i=2;i<=m;i++) {
if(!vis[i]) {
prime[++cnt]=i;
}
for(j=1;j<=cnt&&i*prime[j]<=m;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) break;
}
}
}
int main() {
int i,j;
scanf("%d%d%d",&n,&m,&p);
init();
for(i=1;i<=m;i++) {
A.v[p][(i-1)%p+1]++;
if(vis[i]) B.v[p][(i-1)%p+1]++;
}
for(i=p-1;i;i--) {
for(j=1;j<=p;j++) {
A.v[i][j]=A.v[i+1][j%p+1];
B.v[i][j]=B.v[i+1][j%p+1];
}
}
printf("%lld\n",(pow(A,n).v[p][p]-pow(B,n).v[p][p]+mod)%mod);
}

BZOJ_4818_[Sdoi2017]序列计数_矩阵乘法的更多相关文章

  1. [bzoj4818][Sdoi2017]序列计数_矩阵乘法_欧拉筛

    [Sdoi2017]序列计数 题目大意:https://www.lydsy.com/JudgeOnline/problem.php?id=4818. 题解: 首先列出来一个递推式子 $f[i][0]$ ...

  2. 【BZOJ 4818】 4818: [Sdoi2017]序列计数 (矩阵乘法、容斥计数)

    4818: [Sdoi2017]序列计数 Time Limit: 30 Sec  Memory Limit: 128 MBSubmit: 560  Solved: 359 Description Al ...

  3. 【BZOJ4818】[Sdoi2017]序列计数 DP+矩阵乘法

    [BZOJ4818][Sdoi2017]序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数.Alice还希望 ,这n个数 ...

  4. BZOJ4818 LOJ2002 SDOI2017 序列计数 【矩阵快速幂优化DP】*

    BZOJ4818 LOJ2002 SDOI2017 序列计数 Description Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希 ...

  5. [Bzoj4818]序列计数(矩阵乘法+DP)

    Description 题目链接 Solution 容斥原理,答案为忽略质数限制的方案数减去不含质数的方案数 然后矩阵乘法优化一下DP即可 Code #include <cstdio> # ...

  6. loj#2002. 「SDOI2017」序列计数(dp 矩阵乘法)

    题意 题目链接 Sol 质数的限制并没有什么卵用,直接容斥一下:答案 = 忽略质数总的方案 - 没有质数的方案 那么直接dp,设\(f[i][j]\)表示到第i个位置,当前和为j的方案数 \(f[i ...

  7. 2019.02.11 bzoj4818: [Sdoi2017]序列计数(矩阵快速幂优化dp)

    传送门 题意简述:问有多少长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数,且其中至少有一个数是质数,答案对201704082017040820170408取模(n≤1e9, ...

  8. [SDOI2017]序列计数 (矩阵加速,小容斥)

    题面 Alice想要得到一个长度为n的序列,序列中的数都是不超过m的正整数,而且这n个数的和是p的倍数. Alice还希望,这n个数中,至少有一个数是质数. Alice想知道,有多少个序列满足她的要求 ...

  9. BZOJ4818 [SDOI2017] 序列计数 【矩阵快速幂】

    题目分析: 一个很显然的同类项合并.注意到p的大小最大为100,考虑把模p意义下相同的求出来最后所有的减去没有质数的做矩阵快速幂即可. 代码: #include<bits/stdc++.h> ...

随机推荐

  1. java并发包分析之———concurrentHashMap

    一.Map体系 Hashtable是JDK 5之前Map唯一线程安全的内置实现(Collections.synchronizedMap不算).Hashtable继承的是Dictionary(Hasht ...

  2. python笔记--2--字符串、正则表达式

    字符串 ASCII码采用1个字节来对字符进行编码,最多只能表示256个符号. UTF-8以3个字节表示中文 GB2312是我国制定的中文编码,使用1个字节表示英语,2个字节表示中文:GBK是GB231 ...

  3. CSS 弹性容器

    该文章为英文原文译文及一些自己的拙见墙裂推荐读原文浏览原文请戳这里 : CSS-STRICKS 弹性布局 (Flexbox Layout) 什么是弹性布局 Flexbox Layout 模块旨在提供一 ...

  4. Python import this : The Zen of Python

    >>> import thisThe Zen of Python, by Tim Peters Beautiful is better than ugly.Explicit is b ...

  5. the import java.util.* cannot be resolve,怎么解决

    我碰到这个问题是因为重装系统后,原先的JDK6换成了JDK7, Eclipse中的旧项目中jsp文件的此类import出现错误提示.在以下页面找到解决方案,专贴出来: http://www.myexc ...

  6. Django Web项目代码规范参考

    Python:PEP8+GoogleStyle+DjangoSytlePEP8中文版:http://www.cnblogs.com/huazi/archive/2012/11/28/2792929.h ...

  7. MySQL 忘记root密码解决方法,基于Ubuntu 14.10

    忘记MySQL root密码解决方法,基于Ubuntu 14.10 忘了mysql密码,从网上找到的解决方案记录在这里. 编辑mysql的配置文件/etc/mysql/my.cnf,在[mysqld] ...

  8. 终端字形logo

    网上有很多的项目都有一个自己的字形logo,而我也在开发一个小的项目,也想要生成一个终端字形的logo,于是找到这款小工具,分享给大家:FIGlet “FIGlet is a program for ...

  9. laravel 5.5 安装

    PHP要求 PHP> = 7.0.0 OpenSSL PHP扩展 PDO PHP扩展 Mbstring PHP扩展 Tokenizer PHP扩展 XML PHP扩展 通过Composer创建项 ...

  10. 【转】Javascript全局变量var与不var的区别

    相信你对全局变量一定不陌生,在函数作用域里用a=1这种形式定义的变量会是一个全局变量,在全局作用域里,用下面3种形式都可以创建对全局可见的命名: <script> var a = 1; b ...