Fast Paxos
http://blog.csdn.net/chen77716/article/details/7297122
自从Lamport在1998年发表Paxos算法后,对Paxos的各种改进工作就从未停止,其中动作最大的莫过于2005年发表的Fast Paxos。无论何种改进,其重点依然是在消息延迟与性能、吞吐量之间作出各种权衡。为了容易地从概念上区分二者,称前者Classic Paxos,改进后的后者为Fast Paxos。
1. Fast Paxos概览
Lamport在40多页的论文中不仅提出了Fast Paxos算法,并且还从工程实践的角度重新描述了Paxos,使其更贴近应用场景。从一般的Client/Server来考虑,Client其实承担了Proposer和Learner的作用,而Server则扮演Acceptor的角色,因此下面重新描述了Paxos算法中的几个角色:
- Client/Proposer/Learner:负责提案并执行提案
- Coordinator:Proposer协调者,可为多个,Client通过Coordinator进行提案
- Leader:在众多的Coordinator中指定一个作为Leader
- Acceptor:负责对Proposal进行投票表决
2. Make Paxos Faster
- Phase1a:Leader提交proposal到Acceptor
- Phase2b:Acceptor回应已经参与投票的最大Proposer编号和选择的Value
- Phase2a:Leader收集Acceptor的返回值
Phase2a.1:如果Acceptor无返回值,则自由决定一个
Phase2a.2: 如果有返回值,则选择Proposer编号最大的一个 - Phase2b:Acceptor把表决结果发送到Learner
很明显,在Phase2a.1中,如果Leader可以自由决定一个Value,则可以让Proposer提交这个Value,自己则退出通信过程。只要之后的过程运行正常,Leader始终不参与通信,一直有Proposer直接提交Value到Acceptor,从而把Classic Paxos的三阶段通信减少为两阶段,这便是Fast Paxos的由来。因此,我们更加形式化下Fast Paxos的几个阶段:
- Phase1a:与之前相同
- Phase1b:与之前相同
- Phase2a:Leader收集Acceptor的返回值
Phase2a.1:如果Acceptor无返回值,则发送一个Any消息给Acceptor,之后Acceptor便等待Proposer提交Value
Phase2a.2:如果有返回值,则根据规则选取一个 - Phase2b:Acceptor把表决结果发送到Learner(包括Leader)
- 若Leader可以自由决定一个Value,则发送一条Any消息,Acceptor便等待Proposer提交Value
- 若Acceptor有返回值,则Acceptor需选择某个Value
3 一些定义
- Quorum
在Classic Paxos中一直通过多数派(Majority)来保证算法的正确性,对多数派再进一步抽象化,称为“Quorum”,要求任意两个Quorum之间有交集(从而间接表达了majority的含义) - Round
在Classic Paxos中,Proposer每次提案都用一个全序的编号表示,如果执行顺利,该编号的Proposal在经历Phase1,Phase2后最终会执行成功。
在Fast Paxos称这个带编号的Proposal的执行过程为“Round” - i-Quorum
在Classic Paxos执行过程中,一般不会明确区分每次Round执行的Quorum,虽然也可以为每个Round指定一个Quorum。在Fast Paxos中会通过i-Quorum明确指定Round i需要的Quorum - Classic Round
执行Classic Paxos的Round称为Classic Round - Fast Round
如果Leader发送了Any消息,则认为后续通信是一个Fast Round;若Leader未发送Any消息,还是跟之前一样通信,则后续行为仍然是Classic Round。
根据Lamport描述,Classic Round和Fast Round可通过Round Number进行加以区分。
4 Any消息


5 冲突
- O4(v):下面定义在Round k中v或w被选择的条件:
- 如果v在Round k中被选择,那么存在一个k-Quorum R,使得对任意的Acceptor a∈Q∩R,都对v作出投票。
- 这个问题也可表述为:R中的所有Acceptor都对v作出投票,并且Q∩R≠φ,因为如果Q∩R=φ,则Round i将无法得知投票结果
- 每个Acceptor在同一Fast Round中仅投票一个Value
- Q∩Rv∩Rw≠φ
6 确定Quorum
- 任意两个Classic Quorum有交集
- 任意一个Classic Quorum与任意两个Fast Quorum有交集
- N>2F
- N>2E+F
- |Qc| = |Qf| ≥ N − ⌈N/3⌉ + 1 ≥ ⌊2N/3⌋ + 1
- |Qc| ≥N-⌈N/2⌉+1 = ⌈N/2⌉+1
|Qf|≥N-⌈N/4⌉≥⌈3N/4⌉
证明请参考:一致性算法中的节点下限
7 冲突Recovery
- 报告Acceptor a参与投票的最大Round和对应的Value
- 承诺不会对小于i+1的Round作出投票
7.1 基于协调者的Recovery
7.2 基于非协调的Recovery
8 Fast Paxos Progress
- Phase1a:与之前相同
- Phase1b:与之前相同
- Phase2a:Leader收集Acceptor的返回值
Phase2a.1:如果Acceptor无返回值,则发送一个Any消息给Acceptor,之后Acceptor便等待Proposer提交Value
Phase2a.2:如果有返回值
2.1 如果仅存在一个Value,则作为结果提交
2.2 如果存在多个Value,则根据O4(v)选取符合条件的一个
2.3 如果存在多个结果并且没有符合O4(v)的Value,则自由决定一个 - Phase2b:Acceptor把表决结果发送到Learner(包括Leader)
9. 总结
10 参考资料
- Fast Paxos(Lamport 2005)
- Multicoordinated Paxos
- On the Coordinator’s Rule for Fast Paxos
- Classic Paxos vs. Fast Paxos
- http://en.wikipedia.org/wiki/Paxos_(computer_science)
Fast Paxos的更多相关文章
- Fast Paxos 和 Paxos的区别
详见:http://blog.yemou.net/article/query/info/tytfjhfascvhzxcyt373 自从Lamport在1998年发表Paxos算法后,对Paxos的各种 ...
- ZooKeeper是以Fast Paxos算法为基础的
ZooKeeper是以Fast Paxos算法为基础的,Paxos 算法存在活锁的问题,即当有多个proposer交错提交时,有可能互相排斥导致没有一个proposer能提交成功,而Fast Paxo ...
- 理解分布式一致性:Paxos协议之Cheap Paxos & Fast Paxos
理解分布式一致性:Paxos协议之Cheap Paxos & Fast Paxos Cheap Paxos Message flow: Cheap Multi-Paxos Fast Paxos ...
- zookeeper (二) paxos & fast paxos & FastLeaderElection
参考文章: http://blog.csdn.net/xhh198781/article/details/10949697 paxos->fast paxos->FastLeaderEle ...
- 分布式理论之一:Paxos算法的通俗理解
维基的简介:Paxos算法是莱斯利·兰伯特(Leslie Lamport,就是 LaTeX 中的"La",此人现在在微软研究院)于1990年提出的一种基于消息传递且具有高度容错特性 ...
- 分布式系统理论进阶 - Paxos变种和优化
引言 <分布式系统理论进阶 - Paxos>中我们了解了Basic Paxos.Multi Paxos的基本原理,但如果想把Paxos应用于工程实践,了解基本原理还不够. 有很多基于Pax ...
- Paxos算法与Zookeeper分析
1 Paxos算法 1.1 基本定义 算法中的参与者主要分为三个角色,同时每个参与者又可兼领多个角色: ⑴proposer 提出提案,提案信息包括提案编号和提议的value; ⑵acceptor 收到 ...
- zookeeper学习系列:四、Paxos算法和zookeeper的关系
一.问题起源 淘宝搜索的博客 http://www.searchtb.com/2011/01/zookeeper-research.html 提到Paxos是zookeeper的灵魂 有一篇文章标题 ...
- Paxos变种和优化
分布式系统理论进阶 - Paxos变种和优化 引言 <分布式系统理论进阶 - Paxos>中我们了解了Basic Paxos.Multi Paxos的基本原理,但如果想把Paxos应用于工 ...
随机推荐
- Xcode中Groups和Folder的区别
以前一直没有在意这个问题,今天"中奖"了 ;( 在Xcode文件夹视图中会发现2种颜色的文件夹图标:黄色和蓝色. 黄色表示组(groups),蓝色表示文件夹(folder). 组只 ...
- UNIX环境高级编程——IPC总结
IPC主要包括:管道,消息队列,信号量,共享内存, 套接字(SOCKET). 一.IPC对象的持久性 每种IPC机制都会借助一种数据结构,这种数据结构的实例称为该IPC机制的对象(相应的,用于同步互斥 ...
- 并发编程(三): 使用C++11实现无锁stack(lock-free stack)
前几篇文章,我们讨论了如何使用mutex保护数据及使用使用condition variable在多线程中进行同步.然而,使用mutex将会导致一下问题: 等待互斥锁会消耗宝贵的时间 - 有时候是很多时 ...
- android开发技巧——仿新版QQ锁屏下弹窗
新版的qq,可以在锁屏下弹窗显示qq消息,正好目前在做的项目也需要这一功能.经过各种试验和资料查找,终于实现,过程不难,但是却有一些地方需要注意. 下面是实现过程. 1.使用Activity,而不是V ...
- Linux下修改主机名步骤
Linux下修改主机名为gpdb 步骤一.运行vi /etc/sysconfig/network命令 NETWORKING=yesHOSTNAME=gpdb 步骤二.运行hostname gpdb命令 ...
- 【leetcode77】Single Number
一题目描述: 给定一个数组,只有一个数字出现一次,其余都是两次,判断那个数字 思路: 不断取出数据进行异或,最后一个数字,因为相同的数字会抵消 代码: public class Solution { ...
- jsp自动编译机制
总的来说,Jasper的自动检测实现的机制比较简单,依靠某后台线程不断检测JSP文件与编译后的class文件的最后修改时间是否相同,若相同则认为没有改动,但倘若不同则需要重新编译.实际上由于在Tomc ...
- C语言实现万年历
给出你想知道的年份,便可以计算出该年对应的每个月每个日所对应的星期数,是不是感觉很好玩 ? #include <stdio.h> #include<stdlib.h> long ...
- C++对象模型(一):The Semantics of Constructors The Default Constructor (默认构造函数什么时候会被创建出来)
本文是 Inside The C++ Object Model, Chapter 2的部分读书笔记. C++ Annotated Reference Manual中明确告诉我们: default co ...
- AngularJS进阶(二十八)解决AngualrJS页面刷新导致异常显示问题
解决AngualrJS页面刷新导致异常显示问题 绪 俗话说,细节决定成败,编程亦是如此.编程过程中我们可能会不自觉的忽视一些细节问题,殊不知,这些细节正是导致页面显示出现问题的地方.今略举一例,与君共 ...