题面

传送门

Sol

线性规划费用流解法用与求解未知数为非负数的问题

这道题可以列出一堆形如

\(x[i]+x[j]+x[k]+...>=a[p]\)

的不等式

我们强行给每个式子减去一个东西,使他变成这样

\(x[i]+x[j]+x[k]+...-y[p]==a[p]\)

然后相邻两个式子差分一下

把每个式子看成一个点

那么这样后,在这个题中所有的未知数只会出现在一个方程中

等式左边符号是正的向符号为负的方程连边,费用为代价,如果是补的未知数\(y\),那么费用为零

右边的数是正的连\(s\),否则连\(t\)

费用流出解

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll; IL int Input(){
RG int x = 0, z = 1; RG char c = getchar();
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} const int maxn(1005);
const int inf(1e9); int n, m, first[maxn], cnt, ans, s, t;
int dis[maxn], pre1[maxn], pre2[maxn], vis[maxn];
queue <int> q; struct Edge{
int to, next, f, w;
} edge[maxn * 25]; IL void Add(RG int u, RG int v, RG int f, RG int w){
edge[cnt] = (Edge){v, first[u], f, w}, first[u] = cnt++;
edge[cnt] = (Edge){u, first[v], 0, -w}, first[v] = cnt++;
} IL int Aug(){
for(RG int i = s; i <= t; ++i) dis[i] = inf;
q.push(s), dis[s] = 0, vis[s] = 1;
while(!q.empty()){
RG int u = q.front(); q.pop();
for(RG int e = first[u]; e != -1; e = edge[e].next){
RG int v = edge[e].to;
if(edge[e].f && dis[v] > dis[u] + edge[e].w){
dis[v] = dis[u] + edge[e].w;
pre1[v] = e, pre2[v] = u;
if(!vis[v]) q.push(v), vis[v] = 1;
}
}
vis[u] = 0;
}
if(dis[t] == inf) return 0;
RG int ret = inf;
for(RG int p = t; p; p = pre2[p]) ret = min(ret, edge[pre1[p]].f);
ans += ret * dis[t];
for(RG int p = t; p; p = pre2[p])
edge[pre1[p]].f -= ret, edge[pre1[p] ^ 1].f += ret;
return 1;
} int main(){
n = Input(), m = Input();
s = 0, t = n + 2;
for(RG int i = s; i <= t; ++i) first[i] = -1;
RG int last = 0;
for(RG int i = 1; i <= n; ++i){
RG int v = Input();
if(v - last > 0) Add(s, i, v - last, 0);
else if(v - last < 0) Add(i, t, last - v, 0);
last = v, Add(i + 1, i, inf, 0);
}
Add(n + 1, t, last, 0);
for(RG int i = 1; i <= m; ++i){
RG int l = Input(), r = Input(), c = Input();
Add(l, r + 1, inf, c);
}
while(Aug());
printf("%d\n", ans);
return 0;
}

线性规划费用流解法(Bzoj1061: [Noi2008]志愿者招募)的更多相关文章

  1. 【费用流】BZOJ1061: [Noi2008]志愿者招募(这题超好)

    1061: [Noi2008]志愿者招募 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5291  Solved: 3173[Submit][Stat ...

  2. 【费用流】BZOJ1061[NOI2008]-志愿者招募

    [题目大意] 一个项目需要n天完成,其中第i天至少需要Ai个人.共有m类人可以招募,其中第i类可以从第Si天做到第Ti天,每人的招募费用为Ci元.求最小招募费用. [思路] byvoid神犇的建图详解 ...

  3. 网络流解线性规划问题 BZOJ1061: [Noi2008]志愿者招募

    线性规划定义: 在给定有限的资源和竞争约束情况下,很多问题都可以表述为最大化或最小化某个目标.如果可以把目标指定为某些变量的线性函数,而且如果可以将资源约束指定为这些变量的等式或不等式,则得到了一个线 ...

  4. [BZOJ1061][Noi2008]志愿者招募

    [BZOJ1061][Noi2008]志愿者招募 试题描述 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿 ...

  5. [BZOJ1061] [Noi2008] 志愿者招募 (费用流)

    Description 申奥成功后,布布经过不懈努力,终于成为奥组委下属公司人力资源部门的主管.布布刚上任就遇到了一个难 题:为即将启动的奥运新项目招募一批短期志愿者.经过估算,这个项目需要N 天才能 ...

  6. BZOJ1061 [Noi2008]志愿者招募 【单纯形】

    题目链接 BZOJ1061 题解 今天终于用正宗的线性规划\(A\)了这道题 题目可以看做有\(N\)个限制和\(M\)个变量 变量\(x_i\)表示第\(i\)种志愿者的人数,对于第\(i\)种志愿 ...

  7. BZOJ1061 NOI2008 志愿者招募 线性规划、费用流

    传送门 一道思路很妙的线性规划网络流 设\(X_i\)表示第\(i\)天需要的人数,\(P_i\)表示第\(i\)种人雇佣的个数 那么我们可以列出一系列式子 比如说样例就可以列出三个式子: \(P_1 ...

  8. [BZOJ1061][Noi2008]志愿者招募 线性规划+费用流

    题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1061 根据题意列方程,然后用网络流解线性规划. 题解直接贴ByVoid的吧,太神了:htt ...

  9. BZOJ1061: [Noi2008]志愿者招募(线性规划)

    Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5725  Solved: 3437[Submit][Status][Discuss] Descript ...

随机推荐

  1. Xcode括号自动补全以及二次编译后不显示输入

    今天遇到了一个大坑,在使用栈来进行计算表达式的时候,发现输入括号就报错,以及二次编译后不显示. 测试了好久,经过无数次debug后. 二次编译不显示还是没搞明白,不过输入倒是没什么问题,就是不显示出来 ...

  2. JavaScript DOM编程艺术 笔记(三)函数

    函数function 是在你的代码里随时调用的语句 每个函数是个短小的脚本,arguments,传递的参数 function name(arguments){ statements; } functi ...

  3. 浅谈mongodb与Python的交互

    1. mongdb和python交互的模块 pymongo 提供了mongdb和python交互的所有方法 安装方式: pip install pymongo 2. 使用pymongo 导入pymon ...

  4. Windows运行常用命令(win+R)

    Windows运行常用命令(win+R) 1.calc: 启动计算器 2.notepad: 打开记事本 3.write: 写字板 4.mspaint: 画图板 5.snippingtool:截图工具, ...

  5. 【性能压测】:MQ队列异步处理机制导致的系统无法接受请求的问题

    一,最近压测系统交易峰值时,因该支交易采用MQ异步队列处理机制:该增加积分的交易,前段服务器优先返回给客户增加积分成功的结果,后端的MQ队列服务器再慢慢处理该请求: 二,压测过程中出现的问题现象:前几 ...

  6. 在linux上一行代码不用写实现自动采集+hadoop分词

    在linux上一行代码不用写实现自动采集+hadoop分词 将下面的shell脚本保存成到xxx.sh,然后执行即可 cd /opt/hadoop mkdir spider wget -O spide ...

  7. javascript中的抽象相等==与严格相等===

    1.数据类型:String,Number,Boolean,Object,Null,Undefined 2.抽象相等:x==y A.两者数据类型相同:typeof x == typeof y a.Str ...

  8. easyui的datagrid对应的java对象

    Easyui中datagrid控件要求的数据格式为: {total:”2”,rows:[{“id”:”1”,”name”,”张三”},{“id”:”2”,”name”,”李四”}]} 所以可以建一个对 ...

  9. html转图片,java库cssbox

    引入依赖包 <dependency> <groupId>net.sf.cssbox</groupId> <artifactId>cssbox</a ...

  10. TortoiseGit学习系列之TortoiseGit基本操作克隆项目(图文详解)

    前面博客 全网最详细的Git学习系列之介绍各个Git图形客户端(Windows.Linux.Mac系统皆适用ing)(图文详解) 全网最详细的Git学习系列之安装各个Git图形客户端(Windows. ...