转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html

http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006910.html

k-mean算法与EM

K-means也是聚类算法中最简单的一种了,但是里面包含的思想却是不一般。最早我使用并实现这个算法是在学习韩爷爷那本数据挖掘的书中,那本书比较注重应用。看了Andrew Ng的这个讲义后才有些明白K-means后面包含的EM思想。

聚类属于无监督学习,以往的回归、朴素贝叶斯、SVM等都是有类别标签y的,也就是说样例中已经给出了样例的分类。而聚类的样本中却没有给定y,只有特征x,比如假设宇宙中的星星可以表示成三维空间中的点集。聚类的目的是找到每个样本x潜在的类别y,并将同类别y的样本x放在一起。比如上面的星星,聚类后结果是一个个星团,星团里面的点相互距离比较近,星团间的星星距离就比较远了。

在聚类问题中,给我们的训练样本是,每个,没有了y。

K-means算法是将样本聚类成k个簇(cluster),具体算法描述如下:

1、 随机选取k个聚类质心点(cluster centroids)为

2、 重复下面过程直到收敛 {

对于每一个样例i,计算其应该属于的类

对于每一个类j,重新计算该类的质心

}

K是我们事先给定的聚类数,代表样例i与k个类中距离最近的那个类,的值是1到k中的一个。质心代表我们对属于同一个类的样本中心点的猜测,拿星团模型来解释就是要将所有的星星聚成k个星团,首先随机选取k个宇宙中的点(或者k个星星)作为k个星团的质心,然后第一步对于每一个星星计算其到k个质心中每一个的距离,然后选取距离最近的那个星团作为,这样经过第一步每一个星星都有了所属的星团;第二步对于每一个星团,重新计算它的质心(对里面所有的星星坐标求平均)。重复迭代第一步和第二步直到质心不变或者变化很小。

下图展示了对n个样本点进行K-means聚类的效果,这里k取2。

K-means面对的第一个问题是如何保证收敛,前面的算法中强调结束条件就是收敛,可以证明的是K-means完全可以保证收敛性。下面我们定性的描述一下收敛性,我们定义畸变函数(distortion function)如下:

J函数表示每个样本点到其质心的距离平方和。K-means是要将J调整到最小。假设当前J没有达到最小值,那么首先可以固定每个类的质心,调整每个样例的所属的类别来让J函数减少,同样,固定,调整每个类的质心也可以使J减小。这两个过程就是内循环中使J单调递减的过程。当J递减到最小时,和c也同时收敛。(在理论上,可以有多组不同的和c值能够使得J取得最小值,但这种现象实际上很少见)。

由于畸变函数J是非凸函数,意味着我们不能保证取得的最小值是全局最小值,也就是说k-means对质心初始位置的选取比较感冒,但一般情况下k-means达到的局部最优已经满足需求。但如果你怕陷入局部最优,那么可以选取不同的初始值跑多遍k-means,然后取其中最小的J对应的和c输出。

下面累述一下K-means与EM的关系,首先回到初始问题,我们目的是将样本分成k个类,其实说白了就是求每个样例x的隐含类别y,然后利用隐含类别将x归类。由于我们事先不知道类别y,那么我们首先可以对每个样例假定一个y吧,但是怎么知道假定的对不对呢?怎么评价假定的好不好呢?我们使用样本的极大似然估计来度量,这里是就是x和y的联合分布P(x,y)了。如果找到的y能够使P(x,y)最大,那么我们找到的y就是样例x的最佳类别了,x顺手就聚类了。但是我们第一次指定的y不一定会让P(x,y)最大,而且P(x,y)还依赖于其他未知参数,当然在给定y的情况下,我们可以调整其他参数让P(x,y)最大。但是调整完参数后,我们发现有更好的y可以指定,那么我们重新指定y,然后再计算P(x,y)最大时的参数,反复迭代直至没有更好的y可以指定。

这个过程有几个难点,第一怎么假定y?是每个样例硬指派一个y还是不同的y有不同的概率,概率如何度量。第二如何估计P(x,y),P(x,y)还可能依赖很多其他参数,如何调整里面的参数让P(x,y)最大。这些问题在以后的篇章里回答。

这里只是指出EM的思想,E步就是估计隐含类别y的期望值,M步调整其他参数使得在给定类别y的情况下,极大似然估计P(x,y)能够达到极大值。然后在其他参数确定的情况下,重新估计y,周而复始,直至收敛。

上面的阐述有点费解,对应于K-means来说就是我们一开始不知道每个样例对应隐含变量也就是最佳类别。最开始可以随便指定一个给它,然后为了让P(x,y)最大(这里是要让J最小),我们求出在给定c情况下,J最小时的(前面提到的其他未知参数),然而此时发现,可以有更好的(质心与样例距离最小的类别)指定给样例,那么得到重新调整,上述过程就开始重复了,直到没有更好的指定。这样从K-means里我们可以看出它其实就是EM的体现,E步是确定隐含类别变量,M步更新其他参数来使J最小化。这里的隐含类别变量指定方法比较特殊,属于硬指定,从k个类别中硬选出一个给样例,而不是对每个类别赋予不同的概率。总体思想还是一个迭代优化过程,有目标函数,也有参数变量,只是多了个隐含变量,确定其他参数估计隐含变量,再确定隐含变量估计其他参数,直至目标函数最优。


混合高斯模型(Mixtures of Gaussians)和EM算法

这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation)。

与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中有k个值{1,…,k}可以选取。而且我们认为在给定后,满足多值高斯分布,即。由此可以得到联合分布

整个模型简单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。注意的是这里的仍然是隐含随机变量。模型中还有三个变量。最大似然估计为。对数化后如下:

这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是close form。但是假设我们知道了每个样例的,那么上式可以简化为:

这时候我们再来对进行求导得到:

就是样本类别中的比率。是类别为j的样本特征均值,是类别为j的样例的特征的协方差矩阵。

实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussian discriminant analysis model)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。

之前我们是假设给定了,实际上是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:

循环下面步骤,直到收敛: {

(E步)对于每一个i和j,计算

(M步),更新参数:

}

在E步中,我们将其他参数看作常量,计算的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,值又不对了,需要重新计算,周而复始,直至收敛。

的具体计算公式如下:

这个式子利用了贝叶斯公式。

这里我们使用代替了前面的,由简单的0/1值变成了概率值。

对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。

虽然之前再K-means中定性描述了EM的收敛性,仍然没有定量地给出,还有一般化EM的推导过程仍然没有给出。下一篇着重介绍这些内容。

<转>与EM相关的两个算法-K-mean算法以及混合高斯模型的更多相关文章

  1. 机器学习笔记(十)EM算法及实践(以混合高斯模型(GMM)为例来次完整的EM)

    今天要来讨论的是EM算法.第一眼看到EM我就想到了我大枫哥,EM Master,千里马.RUA!!!不知道看这个博客的人有没有懂这个梗的. 好的,言归正传.今天要讲的EM算法,全称是Expectati ...

  2. EM相关两个算法 k-mean算法和混合高斯模型

    转自http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006924.html http://www.cnblogs.com/jerrylead/ ...

  3. 记录:EM 算法估计混合高斯模型参数

    当概率模型依赖于无法观测的隐性变量时,使用普通的极大似然估计法无法估计出概率模型中参数.此时需要利用优化的极大似然估计:EM算法. 在这里我只是想要使用这个EM算法估计混合高斯模型中的参数.由于直观原 ...

  4. 混合高斯模型(Mixtures of Gaussians)和EM算法

    这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(density estimation). 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示 ...

  5. EM算法与混合高斯模型

    非常早就想看看EM算法,这个算法在HMM(隐马尔科夫模型)得到非常好的应用.这个算法公式太多就手写了这部分主体部分. 好的參考博客:最大似然预计到EM,讲了详细样例通熟易懂. JerryLead博客非 ...

  6. PRML读书会第九章 Mixture Models and EM(Kmeans,混合高斯模型,Expectation Maximization)

    主讲人 网络上的尼采 (新浪微博: @Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:10:56 今天的主要内容有k-means.混合高斯模型. EM算法.对于k-me ...

  7. 第4章 最基础的分类算法-k近邻算法

    思想极度简单 应用数学知识少 效果好(缺点?) 可以解释机器学习算法使用过程中的很多细节问题 更完整的刻画机器学习应用的流程 distances = [] for x_train in X_train ...

  8. 机器学习3_EM算法与混合高斯模型

    ①EM算法: http://www.cnblogs.com/jerrylead/archive/2011/04/06/2006936.html 李航 <统计学习方法>9.1节 ②混合高斯模 ...

  9. 混合高斯模型的EM求解(Mixtures of Gaussians)及Python实现源代码

    今天为大家带来混合高斯模型的EM推导求解过程. watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQveHVhbnl1YW5zZW4=/font/5a6L5L2T/ ...

随机推荐

  1. PHP MysqlI操作数据库

    1连接数据库. //procedural style $mysqli = mysqli_connect('host','username','password','database_name'); / ...

  2. Java中HashMap实现原理

    类声明: 概述: 线程不安全: <Key, Value>两者都可以为null: 不保证映射的顺序,特别是它不保证该顺序恒久不变: HashMap使用Iterator: HashMap中ha ...

  3. Maven_POM配置结构

    本文转载,转载地址:http://blog.csdn.net/ithomer/article/details/9332071 <project>    <parent>     ...

  4. CheckBoxList 全选(jquery版本)

    function selectedAll(allselect, obj) { $("#"+obj.id+" input:checkbox").each(func ...

  5. centsos各个版本的区别

    CentOS-7.0-1406-x86_64-DVD.iso             标准安装版,一般下载这个就可以了CentOS-7.0-1406-x86_64-NetInstall.iso     ...

  6. LINQ操作符四:排序操作符

    Linq中的排序操作符包括OrderBy.OrderByDescending.ThenBy.ThenByDescending和Reverse,提供了升序或者降序排序. 一.OrderBy操作符 Ord ...

  7. golang第三方日志包seelog配置文件详解

    开发任何项目,都离不开日志,配好自己的项目日志输出,往往是开发项目的前提.在golang中,seelog应该是比较有名的日志处理包了,功能非常强大,seelog官方文档 一.seelog主要功能下面我 ...

  8. js学习笔记11----表单操作

    1.复选框选中 var aInput = document.getElementsByTagname('input'); aInput[0].checked=true;

  9. JavaScript操作XML工作记录

    JavaScript操作XML (一) JavaScript操作XML是通过XML DOM来完成的.那么什么是XML DOM呢?XML DOM 是: 用于 XML 的标准对象模型 用于 XML 的标准 ...

  10. 关于Cocos2d-x中节点的获取

    方法一: 1.在.h文件的属性里面先声明要使用的节点或者变量. private: Label *scorelabel; 2.在.cpp文件中创建并使用这个节点或者变量. scorelabel = La ...