洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】
题目链接
题解
感性理解一下:
一神带\(n\)坑
所以我们只需将除了\(n\)外的\(n - 1\)个元素分成\(A + B - 2\)个集合,每个集合选出最大的在一端,剩余进行排列,然后选出\(A - 1\)个集合放左边,剩余放右边
容易发现分割集合并内部排列实质对应第一类斯特林数$$\begin{bmatrix} n - 1 \ A + B - 2 \end{bmatrix}$$
所以答案就是
\]
\(O(n(A + B) + (A + B))\)预处理第一类斯特林数和组合数即可
递推式
\]
真不知道这题是怎么打到深蓝的
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
#include<map>
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define mp(a,b) make_pair<int,int>(a,b)
#define cls(s) memset(s,0,sizeof(s))
#define cp pair<int,int>
#define LL long long int
using namespace std;
const int maxn = 50005,maxm = 205,INF = 1000000000,P = 1000000007;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int s[maxn][maxm],N = 50000,M = 200;
int fac[maxm],fv[maxm];
inline int qpow(int a,int b){
int re = 1;
for (; b; b >>= 1,a = 1ll * a * a % P)
if (b & 1) re = 1ll * re * a % P;
return re;
}
void init(){
fac[0] = 1;
for (int i = 1; i < maxm; i++) fac[i] = 1ll * fac[i - 1] * i % P;
fv[maxm - 1] = qpow(fac[maxm - 1],P - 2); fv[0] = 1;
for (int i = maxm - 2; i; i--) fv[i] = 1ll * fv[i + 1] * (i + 1) % P;
s[0][0] = 1;
for (int i = 1; i <= N; i++){
int E = min(i,M);
for (int j = 1; j <= E; j++)
s[i][j] = (s[i - 1][j - 1] + 1ll * s[i - 1][j] * (i - 1) % P) % P;
}
}
inline int C(int n,int m){
return 1ll * fac[n] * fv[m] % P * fv[n - m] % P;
}
int main(){
init();
int T = read(),n,A,B;
while (T--){
n = read(); A = read(); B = read();
printf("%lld\n",1ll * s[n - 1][A + B - 2] * C(A + B - 2,A - 1) % P);
}
return 0;
}
洛谷P4609 [FJOI2016]建筑师 【第一类斯特林数】的更多相关文章
- LUOGU P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 解题思路 好神仙的思路,首先一种排列中按照最高点将左右分开,那么就是要在左边选出\(a-1\)个,右边选出\(b-1\)一个,这个如何计算呢?考虑第一类斯特林数,第一类斯特林数是将\(n\)个 ...
- 洛谷P4609 [FJOI2016]建筑师(第一类斯特林数+组合数)
题面 洛谷 题解 (图片来源于网络,侵删) 以最高的柱子\(n\)为分界线,我们将左边的一个柱子和它右边的省略号看作一个圆排列,右边的一个柱子和它左边的省略号看作一个圆排列,于是,除了中间的最高的柱子 ...
- [洛谷P4609] [FJOI2016]建筑师
洛谷题目链接:[FJOI2016]建筑师 题目描述 小 Z 是一个很有名的建筑师,有一天他接到了一个很奇怪的任务:在数轴上建 \(n\) 个建筑,每个建筑的高度是 \(1\) 到 \(n\) 之间的一 ...
- 洛谷 P4609: [FJOI2016] 建筑师
本省省选题是需要做的. 题目传送门:洛谷P4609. 题意简述: 求有多少个 \(1\) 到 \(N\) 的排列,满足比之前的所有数都大的数正好有 \(A\) 个,比之后的所有数都大的数正好有 \(B ...
- Luogu4609 FJOI2016 建筑师 第一类斯特林数
题目传送门 题意:给出$N$个高度从$1$到$N$的建筑,问有多少种从左往右摆放这些建筑的方法,使得从左往右看能看到$A$个建筑,从右往左看能看到$B$个建筑.$N \leq 5 \times 10^ ...
- Luogu4609 FJOI2016建筑师(斯特林数)
显然排列中的最大值会将排列分成所能看到的建筑不相关的两部分.对于某一边,将所能看到的建筑和其遮挡的建筑看成一个集合.显然这个集合内最高的要排在第一个,而剩下的建筑可以随便排列,这相当于一个圆排列.同时 ...
- [洛谷4609] [FJOI2016]建筑师
题目描述 LOJ题面:https://loj.ac/problem/2173. 洛谷题面:https://www.luogu.org/problemnew/show/P4609. Solution [ ...
- P4609 [FJOI2016]建筑师(第一类斯特林数)
传送门 没想到连黑题都会有双倍经验的 其实这题本质上是和CF960G Bandit Blues一样的,不过那里是要用分治FFT预处理第一类斯特林数,这里直接打表预处理第一类斯特林数就可以了 //min ...
- 【Luogu4609】建筑师(第一类斯特林数,组合数学)
[Luogu4609]建筑师(组合数学) 题面 洛谷 题解 首先发现整个数组一定被最高值切成左右两半,因此除去最高值之后在左右分开考虑. 考虑一个暴力\(dp\) ,设\(f[i][j]\)表示用了\ ...
随机推荐
- Python运维三十六式:用Python写一个简单的监控系统
市面上有很多开源的监控系统:Cacti.Nagios.Zabbix.感觉都不符合我的需求,为什么不自己做一个呢? 用Python两个小时徒手撸了一个简易的监控系统,给大家分享一下,希望能对大家有所启发 ...
- Redash二次开发-开发环境搭建
环境:win7+pycharm 2018.2 +redash 1.安装pycharm并如何正常使用,找度娘. 2.配置pycharm vcs,设置github用户,从github新建redash项目 ...
- Linux内核学习笔记(6)-- 进程优先级详解(prio、static_prio、normal_prio、rt_priority)
Linux 中采用了两种不同的优先级范围,一种是 nice 值,一种是实时优先级.在上一篇粗略的说了一下 nice 值和实时优先级,仍有不少疑问,本文来详细说明一下进程优先级.linux 内核版本为 ...
- 利用Tensorflow进行自然语言处理(NLP)系列之一Word2Vec
同步笔者CSDN博客(https://blog.csdn.net/qq_37608890/article/details/81513882). 一.概述 本文将要讨论NLP的一个重要话题:Word2V ...
- Leetcode_2. Add_Two_Number
2. Add_Two_Number 用两个非空链表分别表示两个非负整数,链表的节点表示数字的位,链表头表示数字的低位,链表尾表示数字高位.求两个链表所表示数字的和. 比如: Input: (2 -&g ...
- 如何选择合适的Qt5版本?
注意:这里讨论的是在不编译Qt源码的情况下,推荐下载的官方编译版本. 支持XP SP3以及之后的Windows版本:推荐 Qt5.6 或 Qt5.9,这两个版本是LTS版本(即长期支持版本),Bug较 ...
- python 标准日志模块loging 及日志系统实例
本文出处:https://www.cnblogs.com/goodhacker/p/3355660.html#undefined python的标准库里的日志系统从Python2.3开始支持.只要im ...
- FPGA选型
工欲善其事必先利其器,开发FPGA的第一步,当然是选择一片符合你设计需求的芯片. 但是芯片种类那么多,老板又要你越省越好,硬件工程师也天天问你到底该用哪块芯片,怎么办? 今天正好可以跟大家聊聊这些问题 ...
- php分页类学习
分页是目前在显示大量结果时所采用的最好的方式.有了下面这些代码的帮助,开发人员可以在多个页面中显示大量的数据.在互联网上,分页是一般用于搜索结果或是浏览全部信息(比如:一个论坛主题).几乎在每一个W ...
- 解决Ubuntu16.04下git clone太慢问题
记录一些博客,省着自己再去找了... ss-qt5安装 生成.pac genpac --pac-proxy "SOCKS5 127.0.0.1:1080" --gfwlist-pr ...