【BZOJ1758】【WC2010】重建计划(点分治,单调队列)

题面

BZOJ

洛谷

Description

Input

第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai,Bi,Vi分别表示道路(Ai,Bi),其价值为Vi 其中城市由1..N进行标号

Output

输出最大平均估值,保留三位小数

Sample Input

4

2 3

1 2 1

1 3 2

1 4 3

Sample Output

2.500

HINT

N<=100000,1<=L<=U<=N-1,Vi<=1000000

题解

我这鬼代码在BZOJ上跑不过去

因为\(BZOJ\)添加了一组很鬼畜的数据,导致\(BZOJ\)上会\(TLE\)

洛谷上能过。

表示完全不会点分治了,这道题目就当复习用。

每次我们二分一个答案,将所有的边权全部减去这个二分的值

此时题目相当于询问是否存在一条边数在\([L,U]\)之间,权值和大于\(0\)的路径。

考虑每个分治重心的贡献,依次计算当前重心的每一棵子树,

求出所有点的深度(经过的边数),以及权值和

对于每个深度,维护一个前面所有子树的最大权值和。

为了方便计算,按照所有点按照深度排序,这样就用\(bfs\)便利子树就行了。

开始考虑前面的所有子树与当前子树的贡献

用一个指针从大到小维护所有可以的前面子树中的链

同时用单调队列维护一下单调性

每次取出满足经过的边数在\([L,U]\)之间,并且权值和最大的边出来进行组合,计算一下是否满足二分的答案就好了。。

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 111111
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
int n,L,U;
double ans;
struct Line{int v,next,w;}e[MAX<<1];
int h[MAX],cnt=1;
inline void Add(int u,int v,int w){e[cnt]=(Line){v,h[u],w};h[u]=cnt++;}
int size[MAX],Size,root,mx,MD;
bool vis[MAX];
double t[MAX],dis[MAX];
void Getroot(int u,int ff)
{
size[u]=1;int ret=1;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(vis[v]||v==ff)continue;
Getroot(v,u);size[u]+=size[v];
ret=max(ret,size[v]);
}
ret=max(ret,Size-size[u]);
if(mx>ret)mx=ret,root=u;
}
int Q[MAX],H,T,Vis[MAX],dep[MAX];
void bfs(int u,double d)
{
Q[H=T=1]=u;Vis[u]=true;
while(H<=T)
{
int u=Q[H++];
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(vis[v]||Vis[v])continue;
dep[v]=dep[u]+1;dis[v]=dis[u]+e[i].w-d;
Q[++T]=v;Vis[v]=true;
}
}
}
int q[MAX];
bool check(int u,double d)
{
bool fl=false;int md=0;
for(int ee=h[u];ee&&!fl;ee=e[ee].next)
{
int v=e[ee].v;if(vis[v])continue;
dis[v]=e[ee].w-d;dep[v]=1;
bfs(v,d);
int hh=1,tt=0,j=md;
for(int i=1;i<=T;++i)
{
while(j>=0&&j+dep[Q[i]]>=L)
{
while(hh<=tt&&t[q[tt]]<t[j])--tt;
q[++tt]=j;--j;
}
while(hh<=tt&&dep[Q[i]]+q[hh]>U)++hh;
if(hh<=tt&&dis[Q[i]]+t[q[hh]]>=0)fl=true;
}
md=max(md,dep[Q[T]]);
for(int i=1;i<=T;++i)
{
Vis[Q[i]]=false;
t[dep[Q[i]]]=max(t[dep[Q[i]]],dis[Q[i]]);
}
}
for(int i=1;i<=md;++i)t[i]=-1e12;
return fl;
}
void Calc(int u)
{
double l=ans,r=MD;
while(r-l>1e-4)
{
double mid=(l+r)/2;
if(check(u,mid))l=mid;
else r=mid;
}
ans=l;
}
void DFS(int u)
{
vis[u]=true;Calc(u);
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;if(vis[v])continue;
Size=size[v];mx=n;Getroot(v,0);
DFS(root);
}
}
int main()
{
n=read();L=read();U=read();
for(int i=1;i<n;++i)
{
int u=read(),v=read(),w=read();
Add(u,v,w);Add(v,u,w);MD=max(MD,w);
}
Size=mx=n;Getroot(1,0);
DFS(root);
printf("%.3lf\n",ans);
return 0;
}

【BZOJ1758】【WC2010】重建计划(点分治,单调队列)的更多相关文章

  1. [BZOJ1758][WC2010]重建计划(点分治+单调队列)

    点分治,对于每个分治中心,考虑求出经过它的符合长度条件的链的最大权值和. 从分治中心dfs下去取出所有链,为了防止两条链属于同一个子树,我们一个子树一个子树地处理. 用s1[i]记录目前分治中心伸下去 ...

  2. P4292 [WC2010]重建计划 点分治+单调队列

    题目描述 题目传送门 分析 看到比值的形式就想到 \(01分数规划\),二分答案 设当前的值为 \(mids\) 如果存在\(\frac{\sum _{e \in S} v(e)}{|S|} \geq ...

  3. BZOJ1758: [Wc2010]重建计划

    题解: 这题我居然做了一星期?... 平均值的极值其实也可以算是一种分数规划,只不过分母上b[i]=1 然后我们就可以二分这个值.类似与 HNOI最小圈 如果没有 链的长度的限制的话,我们直接两遍df ...

  4. BZOJ1758 WC2010 重建计划 二分答案、点分治、单调队列

    传送门 看到平均数最大,自然地想到二分答案.那么我们的$check$函数就是要求:是否存在一条长度在$[L,U]$的路径,满足其权值和$\geq 0$. 看到长度在$[L,U]$,自然地想到点分治求解 ...

  5. BZOJ1758: [Wc2010]重建计划(01分数规划+点分治+单调队列)

    题目:http://www.lydsy.com/JudgeOnline/problem.php?id=1758 01分数规划,所以我们对每个重心进行二分.于是问题转化为Σw[e]-mid>=0, ...

  6. bzoj1758 [Wc2010]重建计划 & bzoj2599 [IOI2011]Race

    两题都是树分治. 1758这题可以二分答案avgvalue,因为avgvalue=Σv(e)/s,因此二分后只需要判断Σv(e)-s*avgvalue是否大于等于0,若大于等于0则调整二分下界,否则调 ...

  7. BZOJ1758[Wc2010]重建计划——分数规划+长链剖分+线段树+二分答案+树形DP

    题目描述 输入 第一行包含一个正整数N,表示X国的城市个数. 第二行包含两个正整数L和U,表示政策要求的第一期重建方案中修建道路数的上下限 接下来的N-1行描述重建小组的原有方案,每行三个正整数Ai, ...

  8. 2019.01.21 bzoj1758: [Wc2010]重建计划(01分数规划+长链剖分+线段树)

    传送门 长链剖分好题. 题意简述:给一棵树,问边数在[L,R][L,R][L,R]之间的路径权值和与边数之比的最大值. 思路: 用脚指头想都知道要01分数规划. 考虑怎么checkcheckcheck ...

  9. bzoj 1758 [Wc2010]重建计划 分数规划+树分治单调队列check

    [Wc2010]重建计划 Time Limit: 40 Sec  Memory Limit: 162 MBSubmit: 4345  Solved: 1054[Submit][Status][Disc ...

  10. BZOJ.1758.[WC2010]重建计划(分数规划 点分治 单调队列/长链剖分 线段树)

    题目链接 BZOJ 洛谷 点分治 单调队列: 二分答案,然后判断是否存在一条长度在\([L,R]\)的路径满足权值和非负.可以点分治. 对于(距当前根节点)深度为\(d\)的一条路径,可以用其它子树深 ...

随机推荐

  1. 用phpcms如何将静态页面制作成企业网站(上)

    首先,先要准备好这个静态网页的源文件,如图 bs里面是一些css和js的文件,img则是放图片的,文件中的index是网页的首页 运行一下,看看 是这样的 然后打开phpcms文件,上篇博客中有提到, ...

  2. [转]WIN2008 IIS7的日期格式

    最近项目升级服务器从32位升级到64位的WIN2008,日期显示格式非我们所期望的yyyy-M-d格式,原以为修改控制面板的日期格式即可,可是不行. 修改注册表问题解决. 修改方法: 运行注册表编辑器 ...

  3. Python爬虫与反爬虫(7)

    [Python基础知识]Python爬虫与反爬虫(7) 很久没有补爬虫了,相信在白蚁二周年庆的活动大厅比赛中遇到了关于反爬虫的问题吧 这节我会做个基本分享. 从功能上来讲,爬虫一般分为数据采集,处理, ...

  4. tensorflow中tensor与数组之间的转换

    # 主要是两个方法: # 1.数组转tensor:数组a, tensor_a=tf.convert_to_tensor(a) # 2.tensor转数组:tensor b, array_b=b.eva ...

  5. Android错误:can not get file data of lua/start_v2.op [LUA ERROR] [string "require "lua/start_v2””] 已解决

    错误: can not get file data of lua/start_v2.op [LUA ERROR] [string "require "lua/start_v2””] ...

  6. 【springmvc+mybatis项目实战】杰信商贸-6.重点知识回顾

    1.重点知识回顾 Maven1)覆盖仓库文件,实际企业开发,公司会架一个测试服务器,在测试服务器中架私服.我们开发人员的程序,都连接私服.当本地没有项目中要使用的jar,Myeclipse maven ...

  7. 622.设计循环队列 javascript实现

    设计你的循环队列实现. 循环队列是一种线性数据结构,其操作表现基于 FIFO(先进先出)原则并且队尾被连接在队首之后以形成一个循环.它也被称为“环形缓冲器”. 循环队列的一个好处是我们可以利用这个队列 ...

  8. 《图解 HTTP 》阅读 —— 第四章

    第4章 返回结果的HTTP状态码 1XX 接收的请求正在处理 2XX 请求被处理 200 请求成功 204 请求成功,但是没有返回数据 206 客户端进行了范围请求 3XX 重定向 301 永久性重定 ...

  9. 微软职位内部推荐-Principal Group Program Manager

    微软近期Open的职位: Standard job title: Principal Group Program Manager Discipline: Program Management Prod ...

  10. 按照Right-BICEP要求设计四则运算3程序的单元测试用例

    按照Right-BICEP要求: Right——结果是否正确? B——是否所有的边界条件都是正确的? I——能查一下反响关联吗? C——能用其它手段交叉检查一下吗? E——你是否可以强制错误条件发生? ...