[AT2064] [agc005_f] Many Easy Problems
题目链接
AtCoder:https://agc005.contest.atcoder.jp/tasks/agc005_f
洛谷:https://www.luogu.org/problemnew/show/AT2064
Solution
注意到模数为\(441\cdot 2^{21}+1\),嘿嘿
首先要想到考虑贡献,然后这题就简单了。
设当前要算的为\(f(i)\),我们考虑第\(x\)个点的贡献,显然可以得到贡献为:
\]
就是所有的方案减去这个点选不到的方案,其中\(sz_v\)表示以\(x\)为根\(v\)的\(\rm size\)。
然后累和:
f(i)&=\sum_{x=1}^{n}\left(\binom{n}{i}-\sum_{v\in son_{x}}\binom{sz_v}{i}\right)\\
&=n\binom{n}{i}-\sum_{x=1}^{n}\sum_{v\in son_x}\binom{sz_v}{i}
\end{align}
\]
后面那块不好处理,我们可以记个桶\(cnt(s)\)表示大小为\(s\)的子树出现了多少次,这个一遍\(\rm dfs\)就可以算出来。
那么把式子化一下:
f(i)&=n\binom{n}{i}-\sum_{j=1}^{n}cnt(j)\binom{j}{i}\\
&=n\binom{n}{i}-\frac{1}{i!}\sum_{j=i}^{n}\frac{cnt(j)j!}{(j-i)!}
\end{align}
\]
注意到后面可以转化为卷积的形式,设:
\]
后面的\(\sum\)就是:
\]
我们\(\rm reverse\)一下\(g\):
\]
\(NTT\)优化就好了,复杂度\(O(n\log n)\)。
注意这个神奇的模数原根是\(5\),我一开始写成\(3\)还以为是\(NTT\)挂了...
#include<bits/stdc++.h>
using namespace std;
void read(int &x) {
x=0;int f=1;char ch=getchar();
for(;!isdigit(ch);ch=getchar()) if(ch=='-') f=-f;
for(;isdigit(ch);ch=getchar()) x=x*10+ch-'0';x*=f;
}
void print(int x) {
if(x<0) putchar('-'),x=-x;
if(!x) return ;print(x/10),putchar(x%10+48);
}
void write(int x) {if(!x) putchar('0');else print(x);putchar('\n');}
#define lf double
#define ll long long
#define end puts("NO"),exit(0)
const int maxn = 1e6+10;
const int inf = 1e9;
const lf eps = 1e-8;
const int mod = 924844033;
int add(int x,int y) {return x+y>mod?x+y-mod:x+y;}
int del(int x,int y) {return x-y<0?x-y+mod:x-y;}
int mul(int x,int y) {return 1ll*x*y-1ll*x*y/mod*mod;}
int qpow(int a,int x) {
int res=1;
for(;x;x>>=1,a=mul(a,a)) if(x&1) res=mul(a,res);
return res;
}
int fac[maxn],ifac[maxn],inv[maxn],pos[maxn],N,mxn,bit,n;
int w[maxn],rw[maxn],f[maxn],g[maxn],h[maxn],head[maxn],tot,sz[maxn];
struct edge{int to,nxt;}e[maxn<<1];
void ins(int u,int v) {e[++tot]=(edge){v,head[u]},head[u]=tot;}
void dfs(int x,int fa) {
sz[x]=1;
for(int i=head[x];i;i=e[i].nxt)
if(e[i].to!=fa) dfs(e[i].to,x),sz[x]+=sz[e[i].to],g[sz[e[i].to]]++;
g[n-sz[x]]++;
}
void ntt_init() {
w[0]=rw[0]=1,w[1]=qpow(5,(mod-1)/mxn);
for(int i=2;i<=mxn;i++) w[i]=mul(w[i-1],w[1]);
rw[1]=qpow(w[1],mod-2);
for(int i=2;i<=mxn;i++) rw[i]=mul(rw[i-1],rw[1]);
}
void ntt_get(int len) {
for(bit=0,N=1;N<=len;N<<=1,bit++);
for(int i=0;i<N;i++) pos[i]=pos[i>>1]>>1|((i&1)<<(bit-1));
}
void ntt(int *r,int op) {
for(int i=1;i<N;i++) if(pos[i]>i) swap(r[i],r[pos[i]]);
for(int i=1,d=mxn>>1;i<N;i<<=1,d>>=1)
for(int j=0;j<N;j+=i<<1)
for(int k=0;k<i;k++) {
int x=r[j+k],y=mul((op==-1?rw:w)[k*d],r[i+j+k]);
r[j+k]=add(x,y),r[i+j+k]=del(x,y);
}
if(op==-1) {int d=qpow(N,mod-2);for(int i=0;i<N;i++) r[i]=mul(r[i],d);}
}
int main() {
read(n);for(int x,y,i=1;i<n;i++) read(x),read(y),ins(x,y),ins(y,x);
dfs(1,0);fac[0]=ifac[0]=inv[0]=inv[1]=1;
for(int i=1;i<=n;i++) fac[i]=mul(fac[i-1],i);
for(int i=2;i<=n;i++) inv[i]=mul(mod-mod/i,inv[mod%i]);
for(int i=1;i<=n;i++) ifac[i]=mul(ifac[i-1],inv[i]);
for(int i=0;i<=n;i++) h[i]=ifac[i],g[i]=mul(g[i],fac[i]);
g[0]=0;
reverse(g,g+n+1);for(mxn=1;mxn<=n<<1;mxn<<=1);
ntt_init(),ntt_get(n<<1),ntt(g,1),ntt(h,1);
for(int i=0;i<N;i++) f[i]=mul(g[i],h[i]);
ntt(f,-1);
for(int i=1;i<=n;i++) write(del(mul(n,mul(fac[n],mul(ifac[i],ifac[n-i]))),mul(ifac[i],f[n-i])));
return 0;
}
[AT2064] [agc005_f] Many Easy Problems的更多相关文章
- 解题:AT2064 Many Easy Problems&EXNR #1 T3 两开花
题面 两道题比较像,放在一起写了,后者可以看成前者的加强版 (sto ztb orz) 先看AT那道题 考虑计算每个点的贡献,用容斥计算:每个点没有贡献当且仅当选的所有点都在以他为根时的一个子节点的子 ...
- Codeforces 913D - Too Easy Problems
913D - Too Easy Problems 思路:二分check k 代码: #include<bits/stdc++.h> using namespace std; #define ...
- 【AtCoder】AGC005 F - Many Easy Problems 排列组合+NTT
[题目]F - Many Easy Problems [题意]给定n个点的树,定义S为大小为k的点集,则f(S)为最小的包含点集S的连通块大小,求k=1~n时的所有点集f(S)的和取模92484403 ...
- 【CodeForces】913 D. Too Easy Problems
[题目]D. Too Easy Problems [题意]给定n个问题和总时限T,每个问题给定时间ti和限制ai,当解决的问题数k<=ai时问题有效,求在时限T内选择一些问题解决的最大有效问题数 ...
- AtcoderGrandContest 005 F. Many Easy Problems
$ >AtcoderGrandContest \space 005 F. Many Easy Problems<$ 题目大意 : 有一棵大小为 \(n\) 的树,对于每一个 \(k \i ...
- Codeforces B. Too Easy Problems
题目描述: time limit per test 2 seconds memory limit per test 256 megabytes input standard input output ...
- 【AGC 005F】Many Easy Problems
Description One day, Takahashi was given the following problem from Aoki: You are given a tree with ...
- AtCoder - 2064 Many Easy Problems
Problem Statement One day, Takahashi was given the following problem from Aoki: You are given a tree ...
- 【AGC005F】Many Easy Problems FFT 容斥原理
题目大意 给你一棵树,有\(n\)个点.还给你了一个整数\(k\). 设\(S\)为树上某些点的集合,定义\(f(S)\)为最小的包含\(S\)的联通子图的大小. \(n\)个点选\(k\)个点一共有 ...
随机推荐
- 对posintion属性的简单认识,对于还在纠结的同学们,有一定的帮助
position的四个属性值: relative ,absolute ,fixed,static 下面分别讲述这四个属性,以简单代码表示 <div id="parent" ...
- Java 验证码识别库 Tess4j 学习
Java 验证码识别库 Tess4j 学习 [在用java的Jsoup做爬虫爬取数据时遇到了验证码识别的问题(基于maven),找了网上挺多的资料,发现Tess4j可以自动识别验证码,在这里简单记录下 ...
- webgl 包围盒子
包围盒子是鼠标选择物体的一种实现方式,当从相机出发,经过鼠标点形成的射线和物体的包围盒子相交时,就代表物体被选中
- 【UGUI】 (二)--------- 小地图
在绝大多数游戏中,小地图都是极为常见的一个模块而且十分重要.在Unity里面如何制作一个地图其实也是比较简单的 一. 创建玩家与敌人 创建一个Capsule,命名为Player,代表我们的游戏玩家,创 ...
- HDU-4055:Number String
链接:HDU-4055:Number String 题意:给你一个字符串s,s[i] = 'D'表示排列中a[i] > a[i+1],s[i] = 'I'表示排列中a[i] < a[i+1 ...
- Spark配置参数的三种方式
1.Spark 属性Spark应用程序的运行是通过外部参数来控制的,参数的设置正确与否,好与坏会直接影响应用程序的性能,也就影响我们整个集群的性能.参数控制有以下方式:(1)直接设置在SparkCon ...
- 扩展Lucas定理 扩展Lucas板子
题意概述:多组询问,给出N,K,M,要求回答C(N,K)%M,1<=N<=10^18,1<=K<=N,2<=M<=10^6 分析: 模数不为质数只能用扩展Lucas ...
- scrum立会报告+燃尽图(第三周第四次)
此作业要求参见:https://edu.cnblogs.com/campus/nenu/2018fall/homework/2286 项目地址:https://coding.net/u/wuyy694 ...
- 04慕课网《进击Node.js基础(一)》HTTP讲解
HTTP:通信协议 流程概述: http客户端发起请求,创建端口默认8080 http服务器在端口监听客户端请求 http服务器向客户端返回状态和内容 稍微详细解析: 1.域名解析:浏览器搜素自身的D ...
- 03慕课网《进击Node.js基础(一)》API-URL网址解析
url url.parse(url,query,host);解析域名 url必须,地址字符串 query可选 host 可选:在不清楚协议时正确解析 querystring 字符串和对象之间互相解析 ...