题目描述

给出一个数字串,多次询问一段区间有多少个子区间对应的数为P的倍数。其中P为质数。

输入

第一行一个整数:P。第二行一个串:S。第三行一个整数:M。接下来M行,每行两个整数 fr,to,表示对S 的子串S[fr…to]的一次询问。注意:S的最左端的数字的位置序号为 1;例如S为213567,则S[1]为 2,S[1…3]为 213。

N,M<=100000,P为素数

输出

输出M行,每行一个整数,第 i行是第 i个询问的答案。

样例输入

11
121121
3
1 6
1 5
1 4

样例输出

5
3
2


题解

莫队算法

设 $b[i]=S[i...n]\ \text{mod}\ p$ ,那么 $S[l,r]$ 为 $p$ 的倍数,当且仅当: $\frac{b[l]-b[r+1]}{10^{r-l}}\ \text{mod}\ p=0$ 。

当 $p=2$ 或 $p=5$ 时,直接通过数字串末位判断是不是 $p$ 的倍数。设 $v[i]=[i\ \text{mod}\ p=0]$ ,维护 $v[i]$ 和 $v[i]·i$ 的前缀和即可快速得出答案。

当 $p\neq 2$ 且 $p\neq 5$ 时,$p$ 与 $10$ 互质。此时条件简化为:$b[l]\equiv b[r+1]\ (\text{mod}\ p)$ 。

因此原问题转化为:求 $[l,r+1]$ 内 $b$ 值相等的数对的数目。

将 $b$ 离散化,使用莫队算法,用桶维护离散化后的某个 $b$ 的出现次数,指针移动时统计答案即可。

时间复杂度 $O(n\sqrt n)$

#include <cmath>
#include <cstdio>
#include <cstring>
#include <algorithm>
#define N 100010
using namespace std;
typedef long long ll;
ll p;
char str[N];
namespace task1
{
ll s1[N] , s2[N];
void solve()
{
int n , m , i , l , r;
scanf("%s%d" , str + 1 , &m) , n = strlen(str + 1);
for(i = 1 ; i <= n ; i ++ )
{
s1[i] = s1[i - 1] , s2[i] = s2[i - 1];
if((str[i] - '0') % p == 0) s1[i] ++ , s2[i] += i;
}
while(m -- )
{
scanf("%d%d" , &l , &r);
printf("%lld\n" , s2[r] - s2[l - 1] - (l - 1) * (s1[r] - s1[l - 1]));
}
}
}
namespace task2
{
struct data
{
int l , r , bl , id;
bool operator<(const data &a)const {return bl == a.bl ? r < a.r : bl < a.bl;}
}q[N];
int a[N] , mp[N];
ll b[N] , v[N] , ans[N];
void solve()
{
int n , m , i , si , lp = 1 , rp = 0;
ll t = 1 , now = 0;
scanf("%s%d" , str + 1 , &m) , n = strlen(str + 1) , si = (int)sqrt(n);
for(i = n ; i ; i -- , t = t * 10 % p) v[i] = b[i] = (b[i + 1] + (str[i] - '0') * t) % p;
v[n + 1] = 0 , sort(v + 1 , v + n + 2);
for(i = 1 ; i <= n + 1 ; i ++ ) a[i] = lower_bound(v + 1 , v + n + 2 , b[i]) - v;
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d" , &q[i].l , &q[i].r) , q[i].r ++ , q[i].bl = (q[i].l - 1) / si , q[i].id = i;
sort(q + 1 , q + m + 1);
for(i = 1 ; i <= m ; i ++ )
{
while(lp > q[i].l) now += mp[a[--lp]] , mp[a[lp]] ++ ;
while(rp < q[i].r) now += mp[a[++rp]] , mp[a[rp]] ++ ;
while(lp < q[i].l) mp[a[lp]] -- , now -= mp[a[lp++]];
while(rp > q[i].r) mp[a[rp]] -- , now -= mp[a[rp--]];
ans[q[i].id] = now;
}
for(i = 1 ; i <= m ; i ++ ) printf("%lld\n" , ans[i]);
}
}
int main()
{
scanf("%lld" , &p);
if(p == 2 || p == 5) task1::solve();
else task2::solve();
return 0;
}

【bzoj4542】[Hnoi2016]大数 莫队算法的更多相关文章

  1. [BZOJ4542] [Hnoi2016] 大数 (莫队)

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

  2. bzoj4542 [Hnoi2016]大数 莫队+同余

    题目传送门 https://lydsy.com/JudgeOnline/problem.php?id=4542 题解 我们令 \(f_i\) 表示从 \(i\) 到 \(n\) 位组成的数 \(\bm ...

  3. 【BZOJ4542】[Hnoi2016]大数 莫队

    [BZOJ4542][Hnoi2016]大数 Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个 ...

  4. BZOJ.4542.[HNOI2016]大数(莫队)

    题目链接 大数除法是很麻烦的,考虑能不能将其条件化简 一段区间[l,r]|p,即num[l,r]|p,类似前缀,记后缀suf[i]表示[i,n]的这段区间代表的数字 于是有 suf[l]-suf[r+ ...

  5. 【BZOJ4540】[Hnoi2016]序列 莫队算法+单调栈

    [BZOJ4540][Hnoi2016]序列 Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,a ...

  6. [bzoj4540][Hnoi2016][序列] (莫队算法+单调栈+st表)

    Description 给定长度为n的序列:a1,a2,…,an,记为a[1:n].类似地,a[l:r](1≤l≤r≤N)是指序列:al,al+1,…,ar-1,ar.若1≤l≤s≤t≤r≤n,则称a ...

  7. 洛谷P3245 [HNOI2016]大数(莫队)

    题意 题目链接 Sol 莫队板子题.. 维护出每个位置开始的字符串\(mod P\)的结果,记为\(S_i\) 两个位置\(l, r\)满足条件当且仅当\(S_l - S_r = 0\),也就是\(S ...

  8. [BZOJ4542] [JZYZOJ2014][Hnoi2016] 大数(莫队+离散化)

    正经题解在最下面 http://blog.csdn.net/qq_32739495/article/details/51286548 写的时候看了大神的题解[就是上面那个网址],看到下面这段话 观察题 ...

  9. bzoj 4542: [Hnoi2016]大数 (莫队)

    Description 小 B 有一个很大的数 S,长度达到了 N 位:这个数可以看成是一个串,它可能有前导 0,例如00009312345.小B还有一个素数P.现在,小 B 提出了 M 个询问,每个 ...

随机推荐

  1. 20155319 2016-2017-2 《Java程序设计》第四周学习总结

    20155319 2016-2017-2 <Java程序设计>第四周学习总结 教材学习内容总结 ==继承== 6.1.1 继承共同行为 定义:继承基本上就是避免多个类间重复定义共同行为. ...

  2. CF 833 B. The Bakery

    B. The Bakery http://codeforces.com/contest/833/problem/B 题意: 将一个长度为n的序列分成k份,每份的cost为不同的数的个数,求最大cost ...

  3. MySQL入门篇(七)之Xtrabackup备份与恢复

    一.Xtrabackup介绍 MySQL冷备.mysqldump.MySQL热拷贝都无法实现对数据库进行增量备份.在实际生产环境中增量备份是非常实用的,如果数据大于50G或100G,存储空间足够的情况 ...

  4. Python小白学习之函数装饰器

    装饰器 2018-10-25 13:49:37 装饰器从字面意思就是用来装饰的,在函数可以理解为:在函数中,我们不想影响原来的函数功能,又想给函数添加新的功能,这时候我们就用到了装饰器. 一般函数操作 ...

  5. Python基础灬dict&set

    字典dict 字典使用键-值(key-value)存储,具有极快的查找速度. dict基本操作 取值 a_dict = {'name': 'jack', 'age': 18} print(a_dict ...

  6. 在jre1.8版本下,使用ikvm将jar转换为dll,以供c#调用

    由于合作方使用.net编程,jar包不能用,需要转换成dll格式,来回转换了十几个dll文件(心塞..),终于生成了一个可用的.在这里将走过的弯弯绕绕总结下,希望遇到相似问题的同好们,能走得顺利些. ...

  7. 网易客户端授权密码,errormsg='authentication failed (method LOGIN)' exitcode=EX_NOPERM

    zabbix群里一网友在安装msmtp+mutt测试发送邮件失败 配置文件如下: /usr/local/msmtp/etc/msmtprc account default host smtp..com ...

  8. rest_framework基础

    简介 为什么要使用REST framework? Django REST framework 是一个强大且灵活的工具包,用以构建Web APIs. - 在线可视的API,对于赢得你的开发者们十分有用  ...

  9. CF刷刷水题找自信 2

    CF 1114A  Got Any Grapes(葡萄)? 题目意思:给三个人分葡萄,三个人对葡萄的颜色有一些要求,问所准备的三种颜色的葡萄能否满足三人的要求. 解题意思:直接按条件判断即可. #in ...

  10. “来用”Beta版使用说明

    补发Beta版使用说明.Beta版与alpha版相比去掉了计算器,界面上没有太大变化. 1引言 1 .1编写目的 针对我们发布的Beta版本做出安装和使用说明,使参与内测的人员及用户了解软件的使用方法 ...