对每个人行道求出移动距离在哪些区间内时其在建筑物前面。现在问题即为选一个点使得其被最多的区间包含。差分即可。对建筑暴力去掉重叠部分。开始时没有去重用了nm次vector的push_back,时间大概是去重写法的300倍,不知所措。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<vector>
using namespace std;
#define ll long long
#define N 10010
#define M 1010
#define K 1000010
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,a[N],delta[K<<],cnt,d=K,s;
struct data
{
int l,r;
bool operator <(const data&a) const
{
return l<a.l;
}
}b[M],c[M];
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4925.in","r",stdin);
freopen("bzoj4925.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<=n;i++) a[i]=read();
for (int i=;i<=m;i++) b[i].l=read(),b[i].r=read();
for (int i=;i<=m;i++)
{
bool flag=;
for (int j=;j<=m;j++)
if (i!=j&&b[j].l<=b[i].l&&b[j].r>=b[i].r) {flag=;break;}
if (flag) c[++cnt]=b[i];
}
m=cnt;sort(c+,c+m+);
cnt=;
for (int i=;i<=m;i++)
{
int t=i;
while (t<m&&c[t+].l<=c[t].r) t++;
cnt++;b[cnt].l=c[i].l,b[cnt].r=c[t].r;
i=t;
}
m=cnt;
for (int i=;i<=n;i++)
for (int j=;j<=m;j++)
delta[b[j].l-a[i]+K]++,delta[b[j].r+-a[i]+K]--;
cnt=;
for (int i=;i<(K<<);i++)
{
cnt+=delta[i];
if (cnt>s||cnt==s&&abs(i-K)<d) d=abs(i-K),s=cnt;
}
cout<<d<<' '<<s;
return ;
}

BZOJ4925 城市规划的更多相关文章

  1. 浅谈城市规划在移动GIS方面的应用发展

    1.概述 城市建设进程加快,城市规划管理工作日趋繁重,各种来源的数据产生各种层出不穷的问题,严重影响城市规划时的准确性,为此全面合理的掌握好各方面的城市规划资料才能做出更加科学的决策.移动端的兴起为规 ...

  2. 【BZOJ-1952】城市规划 [坑题] 仙人掌DP + 最大点权独立集(改)

    1952: [Sdoi2010]城市规划 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 73  Solved: 23[Submit][Status][ ...

  3. BZOJ 3456: 城市规划 [多项式求逆元 组合数学 | 生成函数 多项式求ln]

    3456: 城市规划 题意:n个点组成的无向连通图个数 以前做过,今天复习一下 令\(f[n]\)为n个点的无向连通图个数 n个点的完全图个数为\(2^{\binom{n}{2}}\) 和Bell数的 ...

  4. 【BZOJ3456】城市规划(生成函数,多项式运算)

    [BZOJ3456]城市规划(生成函数,多项式运算) 题面 求\(n\)个点的无向连通图个数. \(n<=130000\) 题解 \(n\)个点的无向图的个数\(g(n)=2^{C_n^2}\) ...

  5. 洛谷 P4841 城市规划 解题报告

    P4841 城市规划 题意 n个有标号点的简单(无重边无自环)无向连通图数目. 输入输出格式 输入格式: 仅一行一个整数\(n(\le 130000)\) 输出格式: 仅一行一个整数, 为方案数 \( ...

  6. 【BZOJ3456】城市规划 多项式求逆

    [BZOJ3456]城市规划 Description 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了. 刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一些贸易路线, 使得 ...

  7. 【LG4841】城市规划

    [LG4841]城市规划 题面 洛谷 题解 记\(t_i\)表示\(i\)个点的无向图个数,显然\(t_i=2^{C_i^2}\). 设\(f_i\)表示\(i\)个点的无向连通图个数,容斥一下,枚举 ...

  8. 【BZOJ 3456】 3456: 城市规划 (NTT+多项式求逆)

    3456: 城市规划 Time Limit: 40 Sec  Memory Limit: 256 MBSubmit: 658  Solved: 364 Description 刚刚解决完电力网络的问题 ...

  9. [BZOJ3456]城市规划(生成函数+多项式求逆+多项式求ln)

    城市规划 时间限制:40s      空间限制:256MB 题目描述 刚刚解决完电力网络的问题, 阿狸又被领导的任务给难住了.  刚才说过, 阿狸的国家有n个城市, 现在国家需要在某些城市对之间建立一 ...

随机推荐

  1. Sqlserver新增自增列

    if exists(select * from syscolumns where id=object_id('表名') and name='列名') begin alter table 表名 drop ...

  2. Fiddler 调用java webserivces

    这是java写的webservice,并发布成功. 使用Fidder Get调用和POST调用 get比较简单: http://192.168.3.176:8080/AppTestService/se ...

  3. js插件实现一键复制功能

    clipboard.js 可以实现纯 JS 的从浏览器复制文本到系统剪贴板的功能. 使用方法: 1. 下载 clipboard.js,并在页面中引入该插件.clipboard.js 下载地址: htt ...

  4. hdu1042 N!(大数求阶乘)

    N! Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submi ...

  5. Selenide 阶段性总结介绍(UI自动化测试工具)

    今天给大家介绍一个比较新的UI自动化测试工具-- Selenide.确实是比较新的,国内应该还没有多少人用它.在百度和google上你只能搜到一个中文帖子简单介绍了一下.如果你想用这个工具,不可避免的 ...

  6. Linux 安装Redis<集群版>(使用Mac远程访问)

    阅读本文需要先阅读安装Redis<准备> 一 架构细节 所有的redis节点彼此互联(PING-PONG机制) 内部使用二进制协议优化传输速度和带宽 节点的fail是通过集群中超过半数的节 ...

  7. Lua学习笔记(2): 流程控制与循环以及初涉迭代器

    条件判断语句 --if...语句 if (表达式) then --表达式为1时执行的语句 end --if...else语句 if (表达式) then --表达式为1时执行的语句 else --表达 ...

  8. NO--10今天带大家回忆回忆“闭包”吧!

    对于‘闭包,我相信很多人都掉进过这个坑里,也相信很多人没能详细的理解这个问题,今天带大家再次走进闭包: 写这篇文章时的心情是十分忐忑的,因为对于我们今天的主角:闭包,很多小伙伴都写过关于它的文章,相信 ...

  9. while read读取文本内容

    读取文件给 while 循环 方式一: exec <FILE while read line do cmd done 方式二: cat FILE_PATH |while read line do ...

  10. 最短路径算法(I)

    弗洛伊德算法(Floyed-Warshall) 适用范围及时间复杂度 该算法的时间复杂度为O(N^3),适用于出现负边权的情况. 可以求取最短路径或判断路径是否连通.可用于求最小环,比较两点之间的大小 ...