【51Nod1773】A国的贸易 FWT+快速幂
题目描述
给出一个长度为 $2^n$ 的序列,编号从0开始。每次操作后,如果 $i$ 与 $j$ 的二进制表示只差一位则第 $i$ 个数会加上操作前的第 $j$ 个数。求 $t$ 次操作后序列中的每个数是多少。
输入
第一行两个正整数 n , t,意义如题。
第二行 2^n 个非负整数,第 i 个数表示编号为 i-1 的城市的初始货物存储量。
n<=20 t<=10^9
输出
输出一行 2^n 个非负整数。
第 i 个数表示过了 t 天后,编号为 i-1 的城市上的货物数量对 1e9+7 取模的结果。
样例输入
3 2
1 2 3 4 5 6 7 8
样例输出
58 62 66 70 74 78 82 86
题解
FWT+快速幂
显然构建 $b$ 数组,其中 $b[0]=1$ ,$b[2^i]=1$ ,其余为 $0$ ,那么原序列 $a$ 经过一次操作后得到的新序列就是 $a\oplus b$ ,其中 $\oplus$ 表示两个数组的异或卷积。
于是就好办了,先求出 $a[]$ 和 $b[]$ 的FWT,然后直接按位计算 $c[i]=a[i]*b[i]^t$ ,再求逆fwt即可。
时间复杂度 $O(2^n·n)$
注意本题卡常,因此必须加读入优化和输出优化。
#include <cstdio>
#include <cctype>
#define N 1050000
#define mod 1000000007
typedef long long ll;
ll a[N] , b[N];
inline char nc()
{
static char buf[100000] , *p1 , *p2;
return p1 == p2 && (p2 = (p1 = buf) + fread(buf , 1 , 100000 , stdin) , p1 == p2) ? EOF : *p1 ++ ;
}
inline int read()
{
int ret = 0; char ch = nc();
while(!isdigit(ch)) ch = nc();
while(isdigit(ch)) ret = ((ret + (ret << 2)) << 1) + (ch ^ '0') , ch = nc();
return ret;
}
char pbuf[15000000] , *pp = pbuf;
inline void write(ll x)
{
static int sta[12];
int top = 0;
if(!x) *pp ++ = '0';
while(x) sta[top ++ ] = x % 10 , x /= 10;
while(top -- ) *pp ++ = sta[top] ^ '0';
*pp ++ = ' ';
}
ll pow(ll x , int y)
{
ll ans = 1;
while(y)
{
if(y & 1) ans = ans * x % mod;
x = x * x % mod , y >>= 1;
}
return ans;
}
void fwt(ll *a , int n , int flag)
{
int i , j , k , t;
for(i = 1 ; i < n ; i <<= 1)
for(j = 0 ; j < n ; j += (i << 1))
for(k = j ; k < j + i ; k ++ )
t = a[k] , a[k] = (t + a[k + i]) * flag % mod , a[k + i] = (t - a[k + i] + mod) * flag % mod;
}
int main()
{
int n = 1 << read() , m = read() , i;
for(i = 0 ; i < n ; i ++ ) a[i] = read();
b[0] = 1;
for(i = 1 ; i < n ; i <<= 1) b[i] = 1;
fwt(a , n , 1) , fwt(b , n , 1);
for(i = 0 ; i < n ; i ++ ) a[i] = a[i] * pow(b[i] , m) % mod;
fwt(a , n , 500000004);
for(i = 0 ; i < n ; i ++ ) write(a[i]);
fwrite(pbuf , 1 , pp - pbuf , stdout);
return 0;
}
【51Nod1773】A国的贸易 FWT+快速幂的更多相关文章
- 51nod1773 A国的贸易
基准时间限制:2 秒 空间限制:524288 KB 分值: 40 A国是一个神奇的国家. 这个国家有 2n 个城市,每个城市都有一个独一无二的编号 ,编号范围为0~2n-1. A国的神奇体现在,他们 ...
- 【bzoj4589】Hard Nim FWT+快速幂
题目大意:给你$n$个不大于$m$的质数,求有多少种方案,使得这$n$个数的异或和为$0$.其中,$n≤10^9,m≤10^5$. 考虑正常地dp,我们用$f[i][j]$表示前$i$个数的异或和为$ ...
- BZOJ4589: Hard Nim(FWT 快速幂)
题意 题目链接 Sol 神仙题Orzzzz 题目可以转化为从\(\leqslant M\)的质数中选出\(N\)个\(xor\)和为\(0\)的方案数 这样就好做多了 设\(f(x) = [x \te ...
- bzoj 4589: Hard Nim【线性筛+FWT+快速幂】
T了两次之后我突然意识到转成fwt形式之后,直接快速幂每次乘一下最后再逆回来即可,并不需要没此次都正反转化一次-- 就是根据nim的性质,先手必输是所有堆个数异或和为0,也就变成了一个裸的板子 #in ...
- 51Nod1773 A国的贸易 多项式 FWT
原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1773.html 题目传送门 - 51Nod1773 题意 给定一个长度为 $2^n$ 的序列,第 $ ...
- BZOJ4589 Hard Nim FWT 快速幂 博弈
原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ4589.html 题目传送门 - BZOJ4589 题意 有 $n$ 堆石子,每一堆石子的取值为 $2$ ...
- 【51Nod1773】A国的贸易 解题报告
[51Nod1773]A国的贸易 Description 给出一个长度为 \(2^n\) 的序列,编号从\(0\)开始.每次操作后,如果 \(i\) 与 \(j\) 的二进制表示只差一位则第 \(i\ ...
- BZOJ 4589 Hard Nim(FWT+博弈论+快速幂)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4589 [题目大意] 有n堆石子,每堆都是m以内的质数,请问后手必胜的局面有几种 [题解 ...
- #1560 : H国的身份证号码II(dp+矩阵快速幂)
#1560 : H国的身份证号码II 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 H国的身份证号码是一个N位的正整数(首位不能是0).此外,由于防伪需要,一个N位正整 ...
随机推荐
- 20155327 嵌入式C语言课堂补交
嵌入式C语言 题目要求 在作业本上完成附图作业,要认真看题目要求. 提交作业截图 作弊本学期成绩清零(有雷同的,不管是给别人传答案,还是找别人要答案都清零) 题目分析 分析一:提取插入时间 根据老师上 ...
- 【LG4169】[Violet]天使玩偶/SJY摆棋子
[LG4169][Violet]天使玩偶/SJY摆棋子 题面 洛谷 题解 至于\(cdq\)分治的解法,以前写过 \(kdTree\)的解法好像还\(sb\)一些 就是记一下子树的横.纵坐标最值然后求 ...
- 【python笔记】python中的list、tuple、set、dict用法简析
list list是一种有序的集合(或称作列表),可以很方便地添加和删除其中的元素. >>> classmates = ['Michael', 'Bob', 'Tracy'] 可通过 ...
- Linux的常用命令笔记
这里使用的是centos操作系统 一.简单命令 (1)查看历史纪录: history (2)查看当前目录: pwd (3)查看系统当前时间和日期 date (4)查看当前登陆到系统的所有用户 who ...
- Android测试入门学习
一,Android测试新人练习——安装及文件传输 [课前准备] Android测试环境搭建 1.下载并安装JDK: http://www.oracle.com/technetwork/java/jav ...
- Lua学习笔记(2): 流程控制与循环以及初涉迭代器
条件判断语句 --if...语句 if (表达式) then --表达式为1时执行的语句 end --if...else语句 if (表达式) then --表达式为1时执行的语句 else --表达 ...
- 解决Sublime Text 3中文显示乱码(tab中文方块)问题
博客分类: Sublime 一.文本出现中文乱码问题 1.打开Sublime Text 3,按Ctrl+-打开控制行,复制粘贴以下python代码,然后回车运行. 2. 复制并粘贴如下代码: P ...
- InTelliJ 字体调整
Java IDE 工具InTelliJ 调整字体大小 1.File -> Settings 2.左上的搜索框中输入 font. 等待自动查找结果. 3.修改size 大小
- Codeforces 552 E. Two Teams
E. Two Teams time limit per test 2 seconds memory limit per test 256 megabytes input standard input ...
- HttpServlet 详解(基础)
HttpServlet详解 大家都知道Servlet,但是不一定很清楚servlet框架,这个框架是由两个Java包组成:javax.servlet和javax.servlet.http. 在java ...